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Abstract
We update our beliefs based on evidence. Aberrant belief
updating has been linked to schizophrenia and autism. It
is not clear whether the faulty updating is due to reduced
general cognitive abilities, overweighting of recent infor-
mation, or lower thresholds for switching from one belief
to another. A common task to assess belief updating is
the beads task. Patients with schizophrenia show hasty
decision-making.
We here present a model describing the deviations from
an ideal Bayesian observer and apply the model to three
independent datasets, totalling n=176 healthy controls
and n=128 patients with schizophrenia. The parameters
describe a) the number of beads considered (memory),
b) systematic deviation and c) unsystematic deviations
(volatility) from probability estimates.
We find that, on average, patients use fewer beads and
or more volatile responding. However, patients have, on
average, probability estimates that are closer to the true
probabilities. Closer investigations yielded relevant dif-
ferences among the datasets and sequences used. More
challenging sequences improve the performance of pa-
tients.
Our model captures well the cognitive mechanisms pro-
posed to contribute to the performance differences in the
beads task.
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Background
You see dark clouds, how probable is it that it will rain? Such
probability estimates require integration of previous evidence,
and appropriate updating of the odds that it will rain. A com-
monly used paradigm to assess probabilistic reasoning in the
lab is the beads task Phillips and Edwards (1966). Here, par-
ticipants are presented with jars that contain coloured beads.
In the standard version two jars are presented, each contain-
ing opposite ratios of beads e.g. 80% black and 20% white
and vice versa). One bead at a time is drawn with replace-
ment. Participants make probability estimates, also referred
to as graded estimates.
A variant of the task, draws to decision, is often used in clinical
settings. A prominent finding is that patients with schizophre-
nia, particularly those with delusions, decide after a few beads
from which jar the beads are coming e.g. Huq, Garety, and

Hemsley (1988). This has been named the jumping to conclu-
sion bias. Performance in the beads task has been attributed
to a) reduced general cognitive abilities, i.e. a lower working
memory capacity, b) overweighting of the most recent informa-
tion and underweighting of previous information, or c) lower
thresholds for switching from one belief to another (Moritz &
Woodward, 2005).
Without a mathematical model one cannot easily distinguish
the contribution of those accounts on the jumping to conlusion
bias. We here desribe a model that uses the graded estimate
version and asks whether patients show more aberrant prob-
ability estimates than healthy controls, and whether this is due
to basing the inference on fewer evidence. This is an impor-
tant question, as this allows identifying a cognitive mechanism
for the performance difference found in the beads task.

Methods

We analysed three datasets that did assess probability es-
timates in the beads task. Dataset 1 was kindly provided
by S. Moritz. They tested 62 patients with a diagnosis of
schizophrenia and 30 healthy controls (S. Moritz et al., 2016).
There were two test sessions, but we use only the first test
session. We use here only the first two sequences, a sym-
metric 80:20 and an asymmetric 50:50 vs 80:20 sequence.
Participants made both a draws to decision judgement, as well
as providing probability estimates for each of the two jars.
Dataset 2 is from Peters and Garety (2006), referred to here
as P&G, and kindly provided by Rick Adams. We used the
first session, which had 23 patients with schizophrenia, and 35
healthy controls. We did not include the non-psychotic patient
group here. P&G used a symmetrical 85:15 sequence and
participants estimated the probabilities on a 0 to 100 scale.
Dataset 3 is from Adams, Napier, Roiser, Mathys, and Gilleen
(2018), referred to here as Gilleen. They tested 56 patients
with schizophrenia and 111 healthy controls, all tested only
once. There are four sequences made of two identical pairs
(ratio 80:20), and the order of presenting the four sequences
was randomised. Probability estimates were given on a 7
point scale from sure it is jar A, indifferent whether it is jar
A or jar B, to sure it is jar B; and only an estimate for one jar
was made.
Common is that a total of 10 beads were shown sequentially,
and beads were drawn with replacement, i.e. the proportion
of beads in the jars did not change.
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Figure 1: Systematic deviation a

Figure 2: Random / stochastic deviation σ

The model
The probability that bead k comes from jar A in sequence j
can be calculated using Bayes formula. We model here the
deviations from an ideal Bayesian observer (IBO). We assume
that a participant i may or may not use all available informa-
tion, and model this with a parameter m, describing the num-
ber of beads included in one’s probability estimates, i.e. the
memory length. m ranges from 0 to 10, i.e. if mi = 0 the par-
ticipant totally ignores the sampled beads, if mi = 1 one only
considers the last bead sampled and so on, and if k≤mi one
considers all the k beads sampled so far.
We further include two parameters describing systematic and
random deviations between the subjective probability esti-
mates and those from the IBO. We define this probability as
ρL

i jk for the left bag, and correspondingly the probability for the
other bag is 1−ρ. Note, that in the Moritz dataset participants
did indicate both probabilities, but to compare the 3 datasets
we used this specification for all three datasets. Since the
probability estimates range from 0 to 1, we use a truncated
normal distribution which we associate with a normally dis-
tributed variable πL

i jk ∈ (−∞,∞) and define

ρ
L
i jk =


0 if πL

i jk ≤ 0,
πL

i jk if πL
i jk ∈ (0,1),

1 if πL
i jk ≥ 1.

(1)

The mean and standard deviation of πL
i jk we define as

E
[
π

L
i jk

∣∣θi
]
=

1

1+
(

1−pL
i jk(mi)

pL
i jk(mi)

)ai and SD
[
π

L
i jk

∣∣θi
]
= σi,

(2)
respectively.

For ai = 1 we have E
[
πL

i jk

∣∣∣θi

]
= pL

i jk(mi). Parameter val-

ues ai < 1 and ai > 1 model tendencies for individual number
i to specify values for ρL

i jk that are too close to a half and too
close to zero or one, respectively, relative to the probability
pL

i jk(mi) used to decide from which jar the beads are coming.
The standard deviation σi models to what degree the spec-
ified probability estimates ρL

i jk of individual number i deviate

from E
[
πL

i jk

∣∣∣θi

]
. Note that a can take on any value, and a

describes how well one can discriminate probabilities.
We adopt a hierarchical Bayesian setup and assign a prior
distribution for the parameter vector of each individual, θi =
(mi,ai,σi). Given a vector of hyper-parameters, ϕ, we as-
sume the parameter vectors θi, i = 1, . . . ,n to be a priori inde-
pendent. Moreover, given ϕ we assume the components of θi
to be independent. We assume all ai and σi to be gamma dis-
tributed and parameterise these gamma distribution by their
mean values and standard deviations. For mi we just assume
it has some discrete distribution over the possible values. We
assign a vague prior to the vector of hyper-parameters ϕ. Fur-
ther, we estimate the parameters for each group (patients and
controls) and datasets separately.
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Results
Participants with a diagnosis of schizophrenia use on aver-
age fewer beads, i.e. their m is lower than that for healthy
control participants. The systematic deviation a is smaller in
patients than in healthy controls (Fig 1). In P&G and Gilleen’s
datasets both groups have a < 1 but the patient group has a
smaller systematic deviation than the control group (see ta-
ble 1). In the Moritz dataset, on average, the patient group
shows nearly no systematic deviation, compared to the more
sigmoid behaviour of the control group. However, closer in-
spection shows that this is due to the asymmetric sequence
(see below). The unsystematic deviation was larger in pa-
tients, across sequences and consistent for all three datasets
(Fig 2).

Table 1: Descriptive Statistics
a σ m

HC SCZ HC SCZ HC SCZ
P&G mean 0.32 0.45 0.08 0.19 8.45 5.32
P&G SD 0.35 0.4 0.05 0.13 2.65 2.08
Moritz mean 1.78 0.96 0.20 0.26 9.60 8.8
Moritz SD 0.93 0.66 0.11 0.28 1.78 2.25
Gilleen mean 0.44 0.52 0.15 0.30 7.94 4.78
Gilleen SD 0.31 0.36 0.11 0.37 3.59 4.12

In all three datasets σ was negatively correlated with m, i.e.
the fewer beads considered the more random deviations the
participant also showed, however the overall correlation was
only r = -.14 with an 95% CI [-.245 -.032]. Similarly, there was
an overall positive correlation between systematic and random
deviation, r = .167, 95% CI [.059 .271] however, the correla-
tion was negative in the P&G dataset and close to zero in the
Moritz dataset, i.e. this relationship was driven by the large
number of controls in the Gilleen dataset.
Figure 3 illustrates the interaction of the memory parameter
and stochastic behaviour for two cases with nearly perfectly
linear probability estimates. In the left-hand of Fig 3 changes
in observed beads have a high correlation with the specified
probabilities; a low m is reasonable, as only the last bead is
considered. When the low m explains most of the changes
in the specified probabilities σ becomes low. In contrast, on
the right-hand of Fig 3 the participant seems more or less to
ignore the observed beads, then σ must become large.

Which sequence is most discriminative
Next, we looked at how the type of sequence affects perfor-
mance. In the Gilleen dataset, we found that the systematic
deviation was smallest for the sequences A and D than the
sequences B and C. Also the unsystematic deviation σ was
lowest for the first sequence participants saw. Healthy con-
trols used the same number of beads in all four sequences
whereas patients used around 2 beads more in the sequence
B, indicating that they are aware that estimating from which
jar the bead comes is harder to judge in a (de facto) 60:40
sequence.

Figure 3: Responses from two participants with different σ (s)
and m but same a, dots represent the beads shown. Top row
is 80:20, then 60:40, 40:60 and last row is the 20:80 trial.

Moritz et al. used a symmetrical and an asymmetrical se-
quence. The asymmetrical sequence yielded in both groups
a more sigmoid estimate of the probabilities, most extreme in
healthy controls (m = 1.91, sd = .89) compared to patients
(m = 1.28, sd = .64). This is in contrast to the symmet-
ric sequence where the systematic deviation was very good
for controls (m = .81, sd = .29), whereas patients showed a
systematic deviation similar to that seen in P&G and Gilleen
dataset (m = .55, sd = .26). The random deviation σ was simi-
lar in the symmetric condition but increased for both groups in
the asymmetric sequence. Notably controls did use on aver-
age one more bead to make their probability estimates in the
asymmetric condition.
Combining over all three datasets we found that the difficulty
of a sequence mostly increases the unsystematic deviation in
patients whereas such an increase in σ was not so profound
for healthy controls.

Discussion

Our model captures two important aspects of the beads tasks:
understanding probabilities and sequential updating of the in-
formation. We find clear differences between healthy controls
and patients on all three parameters, and importantly also be-
tween the datasets. The number of beads considered is lower
in patients than in healthy controls, but both groups evaluate
more beads in the asymmetric sequence and in sequences
with more even ratios, indicating that both groups are sensi-
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tive to the cognitive effort required to estimate the probabili-
ties. Reduced cognitive abilities have been linked to the jump-
ing to conclusions bias in the beads task (Garety et al., 2013;
Speechley, Whitman, & Woodward, 2010; Woodward, Munz,
LeClerc, & Lecomte, 2009). Thus, our model captures this ex-
plicitly by modelling the number of beads used for making an
inference. Importantly, fewer beads considered does not lead
to a more biased probability estimate or always to more unsys-
tematic responding (see Fig 3). We find a smaller systematic
deviation in patients than in controls, indicating good discrim-
inability of probabilities, in fact patients treat probabilities more
linearly than healthy controls do. The larger systematic devi-
ation in healthy controls might reflect the conservative bias
(Phillips & Edwards, 1966), i.e. updating of the probability es-
timate is less than prescribed by Bayes theorem. Unsystem-
atic or random deviation was larger in patients than in controls,
but patients were also more heterogenous than controls. The
larger unsystematic deviation found here is in agreement with
the results from Moutoussis, Bentall, El-Deredy, and Dayan
(2011) who modelled the Draws to Decision version of the
beads task. The more stochastic responding may reflect a
propensity to see a change in jar, particularly in those cases
where the number of beads considered is large (Pfuhl, Sand-
vik, Biegler, & Tjelmeland, 2015). The model by Adams et al.
(2018) and other paradigms support the notion that patients
perceive the world as more volatile, i.e. attributing new evi-
dence to a change in the environment (Deserno et al., 2017).
In the Moritz dataset patients show on average very good un-
derstanding of probabilities but this was driven by the asym-
metric sequence where controls show - contrary to the sym-
metric sequence - a sigmoid response, i.e. they prefer to di-
chotomize the probabilities into very sure / absolute sure it
comes from jar A or it comes from jar B. In contrast, P&G’s
and Gilleen’s datasets show that both patients and controls
have a large range to which they respond with around 50%
or could be any of the two jars. This might be driven by how
the task was presented. Indeed, Moritz’s dataset showed very
good memory, i.e. m around 10 for most participants includ-
ing patients. P&G and Gilleen, on the other hand, indicate
that patients use fewer beads when judging probabilities. In
Moritz we find a difference in subjective probability, not mem-
ory, whereas in P&G and Gilleen the main difference is one
of memory, not of subjective probability estimates. Still, in all
three datasets, patients on average respond more randomly
(Fig 2). We also found that the first presentation is most dis-
criminative between patients and controls. Patients become
better on the second sequence, although that could be con-
founded by the difficulty of the sequences. Also, using asym-
metric sequences reduces group differences.
In sum, our model may resolve why some find hypersalience
in patients whereas other find a lower decision threshold. Par-
ticipants use different strategies, some respond bead by bead,
seen in a low m whereas others are nearly perfectly Bayesian
which can appear in comparison to the healthy control sam-
ple as having a lower decision threshold. Probabilities are not

treated linearly but, importantly, patients have a lower system-
atic bias in estimating probabilities than healthy controls.
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