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Abstract

The development of neurostimulation techniques to evoke mo-
tor patterns is an active area of research. It serves as a cru-
cial experimental tool to probe computation in neural circuits,
and it has applications in neuroprostheses used to aid recov-
ery of function after stroke or injury. There are two important
challenges when designing algorithms to unveil and control
neurostimulation-to-motor mappings, thereby linking spatiotem-
poral patterns of neural stimulation to muscle activation: (1)
the exploration of motor maps needs to be fast and efficient
(exhaustive search is to be avoided for clinical and experimental
reasons) (2) online learning needs to be flexible enough to track
ongoing changes in these maps. We propose a stimulation
search algorithm to address these issues, and demonstrate its
efficacy with experiments in non-human primate models. Our
solution is a novel iterative process using Bayesian Optimization
via Gaussian Processes on increasingly complex signal spaces.
We show that our algorithm can successfully and rapidly learn
mappings between complex stimulation patterns and evoked
muscle activation patterns, where standard approaches fail. Im-
portantly, we uncover nonlinear circuit-level computations in M1
that would not have been possible to identify using conventional
mapping techniques.

Introduction
Each year, over 15 million people worldwide suffer major debili-
tating motor system injuries such as spinal cord trauma (Spinal
cord injury , 2013) or stroke (Thrift et al., 2016). A promising
approach to help restore movement applies targeted, artificial
stimulation of motor-related neural pathways, e.g. in motor
cortex (Cioni B, 2016), spinal cord (Wenger et al., 2016), or pe-
ripheral functional electrical stimulation (Selfslagh et al., 2019)
using brain-computer interfaces (BCI). New implantable de-
vices which are microfabricated with many (>32) electrodes
hold potential for targeted and specific stimulation, yet existing
control algorithms do not fully take advantage of this, generally
relying on incomplete and manual mapping, and often single
electrode stimulations. Our goal is to extend these control algo-
rithms to multiple electrode stimulations, which we believe will
be necessary to elicit complex movement outputs. Effectively
searching the space of possible spatiotemporal stimulation pat-
terns however is a complex task because of its combinatorial
explosion in size. Exhaustive search is therefore impossible in
practice, especially if algorithms are to be used on-line in clini-
cal settings. Moreover, the mappings between stimulation and
output are noisy, and may change over time due to plasticity of
neural circuits (Kaas, 1991). Any method to identify stimulation
protocols must be robust, and flexible enough to track such
changes.
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We propose a Gaussian Process (GP) based hierarchical
Bayesian Optimization (BO) approach. This leverages acquired
knowledge of muscle responses for single channel stimulations
to build priors for stim-to-EMG maps for multi-channel stimula-
tion patterns, where only correction terms need to be learned.
The advantages of recursively learning correction terms, rather
than a complete map, are threefold: (1) Convergence to opti-
mal stimulation requires fewer exploratory stimuli than direct
optimization on the space of all signals. (2) The algorithm
can be used online and adapts quickly to changes in neural
dynamics. (3) Our method precisely learns the nonlinearities
introduced by network dynamics, and can track the evolution of
population codes throughout recovery, thus allowing a mapping
of circuit-level computations.

In this paper, we describe our novel algorithm and demon-
strate its efficacy with motocortical neurostimulation experi-
ments in non-human primates where optimal multi-electrode
signals are identified to evoke muscle synergies. We discuss
future development directions as well as uncovered circuit-level
neural mechanisms present in M1.

Methods

Neural Stimulation: Setup and Experiment
Description

A 96 channel Utah array is implanted in primary motor cor-
tex (M1) of a male adult Cebus Capella, and five electromyo-
gram (EMG) electrodes are inserted in different muscles of
the forearm and hand: flexor carpi ulnaris, extensor digitorum
communis, extensor carpi radialis, opponens pollicis and flexor
pollicis brevi (see monkey in Fig. 1a5). We stimulate M1 by
sending electrical pulse trains through one or many channels,
and observe time series of EMG responses (Fig. 1b) that cor-
relate with the animal’s muscle activations. Our goal is to find
the stimulation pattern which will evoke a given target EMG
response as best as possible.

Mathematically, we consider electrical stimulation signals
that are composed of discrete events (single electrical pulses or
short pulse trains) that we call (stimulation) events for generality.
For our cortical stimulation experiment, we consider a two
dimensional 2× 5 grid that is circled in red in Fig. 1a and
use stimulation events consisting of trains of 13 pulses of
30µA, delivered at 330Hz (for a total of roughly 40 ms). Note
the spatial configuration of channels is important for learning
as Gaussian Processes make use of this information in their
kernel distance function. In this article, we restrict our data
collection to this small subgrid to allow extensive search of
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(a) Cebus Apella with Utah Array (M1) and
EMGs (not real locations). Stimulation
search space restricted to 2×5 grid in red.
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(b) Single train (rectified) EMG responses
for single-channel [1,1]. Arrow shows the
max of EMG 2, thus C(r2([1,1]))≈ 0.013.
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(c) GP fit for EMG 2 for single-electrode
stimulation. Surface shows GP’s mean f̄ ,
and color shows standard deviation.

Figure 1: Experiment Setup and Data Description.

the two electrode stimulation space6 (formally defined below).
Nevertheless, we note that our algorithm scales nicely to larger
channel counts.

We denote each channel by discrete Cartesian coordinates
c = [x,y], x ∈ {0,1}, y ∈ {0, . . . ,4}. A stimulation containing
k events is a tuple sk = (c1, . . .ck,∆t1, . . . ,∆tk−1) where ci in-
dicates the channel of the ith event, and ∆ti is the inter-event
interval between events i and i+ 1.7 Each sk generates a
noisy response pattern r(sk). In our case, we consider the
(rectified) response of five EMGs: r(sk) = (r0(sk), . . . ,r4(sk)).
Our goal is to optimize an objective function C(r(sk)). Here C
is flexible; it can be extracting the maximum output of a single
EMG (or combinations of EMGs), or measuring a distance be-
tween evoked pattern r(sk) and a target pattern rtarget . In this
paper, C(r(sk)) returns the maximum output of a single ri(sk)
or combinations of ri(sk) for muscle synergies (see Results),
in 150ms following the first stimulus delivery. In general, r(sk)
could also depend on time. We omit this for notation clarity.
We want to find

argmax
sk

C(r(sk))

where the argmax can be replaced by argmin if we want to min-
imize a distance function instead of maximizing an amplitude.

In this article, we demonstrate and test our algorithm of-
fline on the space of double-event stimulations s2. To do so,
we gathered an exhaustive dataset consisting of 10 trials per
stimulation pattern (pairs of electrode) for each of these ∆t:
0,10,20,40,60,80,100 ms, and sample from this data set to
simulate online optimization. An online demonstration will be
presented in a forthcoming publication.

Gaussian Processes for Bayesian Optimization
Given the constraints of our problem, namely that of black-
box derivative-free global optimization under time constraints,

6With this current setup, the data collection protocol takes about an
hour, during which the monkey needs to receive intravenous ketamine
delivery every 8 minutes. It would be hard to maintain the animal in
an overall stable state for longer times, and this could change the data
distribution.

7In this experiment, we use trains of fixed intensity but power could
be added to the stimulation parameters with the same formalism.

Bayesian Optimization (Brochu et al., 2010) is a natural fit.
This provides uncertainty estimates that allow tracking and
adapting online to both signal delivery changes in the implant
and structural changes in the underlying brain substrate.

BO constructs, at every iteration, a probabilistic surrogate
to the function C being optimized, which is used to balance ex-
ploration and exploitation through the design of an acquisition
function. It does so by treating the unknown function C as a
random function and placing a prior over it. This prior dictates
attributes of the function such as smoothness and frequency of
oscillation. By conditioning on the so far observed responses of
the function, a posterior distribution over possible functions is
obtained, from which the algorithm can decide where to query
next based on optimizing an acquisition function. Acquisition
functions convert a probabilistic belief into a deterministic func-
tion that explicitly embodies the trade-off between exploration
and exploitation. Following the current literature, we choose
to model the random surrogate as a Gaussian Process (Ras-
mussen & Williams, 2005), and use the Upper Confidence
Bound (Brochu et al., 2010) as acquisition function.

Gaussian Process Prediction GPs are such that for a finite
number of training data points xxx and their associated responses
yyy, plus a finite number of test data points xxx∗ whose response
fff ∗ we would like to predict, we get a Multivariate Gaussian(

y
f∗

)
∼N

((
m(x)
m(x∗)

)
,

(
Ky(x,x) K(x,x∗)
K(x∗,x) K(x∗,x∗)

))
where m and K are the mean and kernel functions associ-
ated to the GP, and Ky(xp,xq) = K(xp,xq)+σ1xp=xq , where
σ is the noise standard deviation parameter, which will be
optimized along with K’s parameters. We can get our predic-
tion for fff ∗ by simple conditioning on this Multivariate Normal
distribution (Bishop, 2006):

f∗|x∗,y,x∼N
(

f̄∗,cov( f∗)
)
,where

f̄∗ = m(x∗)+K(x∗,x)[K(x,x)+σ
2III]−1(y−m(x))

cov( f∗) = K(x∗,x∗)−K(x∗,x)[K(x,x)+σ
2III]−1K(x,x∗).

Sequential Optimization Given a GP and a set of possible
points to explore, we use the Upper Confidence Bound (UCB)
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acquisition function (Brochu et al., 2010): UCB(x) = µ(x)+
kσ(x) to identify the next query likely to maximize the objective.
Notice that k is the parameter which modulates the trade-off
between exploration (high k) and exploitation (low k). We
set k = 3 for all of our experiments, which worked best, but
note that the performance of the algorithm is sensitive to this
hyperparameter and tuning it by cross-validation or some other
method will be necessary for portability across different kinds
of neural interfaces.

Hierarchical GP We describe here the main (algorithmic)
contribution of this paper. Our goal, as previously expounded,
is to find the multi-electrode stimulation pattern with the best
response, where best is defined by the objective function.
The challenge here is that the space of spatiotemporal multi-
electrode patterns grows combinatorially fast in the number of
channels and stimulation event. For two-electrode stimulation
on our 2× 5 grid for example, there are 100 combinations
of channel pairs possible, without even considering different
inter-event intervals ∆t. The direct approach of training a GP
on this space is not scalable, and does not take advantage
of prior knowledge of motor circuit coding; namely, that motor
outputs of spatiotemporal neural activations can often be de-
composed (although not exactly) into individual neural-muscle
correspondences (Georgopoulos et al., 1986). We leverage
this fact in a hierarchical approach where we use GPs fitted
on lower dimensional stimuli spaces, to build priors for GPs in
higher dimensional stimuli spaces.

More formally for the two-electrode space s2 = (c1,c2,∆t),
if we write the single-electrode GP as f1(c)∼ GP(0,K1) then
our prior on the two-electrode GP will be

f2(c1,c2,∆t)∼ GP(a1 f̄ n
1 (c1)+a2 f̄ n

1 (c2),K2)

where f n
1 := f1|Data is the GP trained on the single-

electrode data, f̄ n
1 indicates its mean function, and

K2 is a standard Matern52 (Rasmussen & Williams,
2005) multiplicative kernel which separates over time

and space: K2

(
(c(1)1 ,c(1)2 ,∆t(1)),(c(2)1 ,c(2)2 ,∆t(2))

)
=

Ks

(
(c(1)1 ,c(1)2 ),(c(2)1 ,c(2)2 )

)
Kt

(
∆t(1),∆t(2)

)
.

In short, our constructed prior is an independent, additive
contribution from the two channels, factoring in the time delay
∆t, which is also an explored parameter. We use the kernel in
the two-electrode space to learn and correct the multiplicative,
nonlinear difference from this prior. The weights a1 and a2
and the kernel hyper-parameters are optimized incrementally
using BO after each new query. The same procedure can be
recursively used to to include more electrodes, although we
present results only for the two-electrode case in this paper.
We show in the next section that important gains are obtained
from using our method.

Results
Single Electrode Stimulation
We now describe how we use a GP to build a function approxi-
mation of the single electrode responses. In this work, we only

use the mean function of this GP as prior information for the
two-electrode GP, but we could also incorporate the uncertainty
estimates in the two-electrode kernel, or in the likelihood model
(see Discussion). Because the ultimate goal is to find the best
stimulation in the double electrode space using the minimum
amount of queries, we also need to factor in all of the queries
made in the single electrode space. For this dataset we find
that spending 25 queries in the single electrode space (roughly
2 queries per channel) is enough to have confidently found the
highest responding channels, as is illustrated in Fig. 2b.

Two Electrodes Stimulation Pattern
To showcase our algorithm on a concrete example, we use
a temporal co-activation of multiple EMGs (see Fig. 2a) as a
target in our objective function, which we define to act as a
proxy for a complex sequential two-muscle movement. We tar-
get two muscles of the animal, the flexor carpi ulnaris (EMG0)
and the opponens pollicis (EMG4), which we want to activate
with a 40ms delay in between peaks. In order to formulate
this problem using a similar objective function as described in
the Methods section, we make the simplifying assumption that
movement amplitude will correlate with the maximum ampli-
tude of combined EMG responses, incorporating the desired
delay. We define

C(r(s2)) = maxtr0(s2, t)+ r4(s2, t +40). (1)

In our search, we restrain the ∆t dimension to the discrete
set (20,40,60)ms due to data collection constraints (see Foot-
note 6). We found that having the spatial kernel dimensions
share lengthscales gave the best results. Furthermore, we
constrain this lengthscale to be between 1 and 2 so as to
avoid spurious local minima where either the data is explained
by noise only (l = ∞) or the responses become independent
(l = 0) (Rasmussen & Williams, 2005). We also constrain
the noise standard deviation to be between 5e−4 and 1e−3
(typical EMG response size are between 1e−2 and 3e−2),
which encompasses the empirical standard deviation of every
stimulation pattern. We compare our hierarchical approach,
which uses priors built with a GP in the single-electrode space
using 20 queries, to a GP which is directly trained on the two-
electrode space.

The results in Fig. 2b show that our algorithm clearly out-
performs the standard GP-BO procedure, which not only takes
much longer to converge, but also is more sensitive to the
UCB parameter k, and can more easily get stuck in local
minima. We show that for the chosen muscle combination,
the mean accuracy over 25 repeated trials is 1 after about
40 query points (including the initial ∼ 25 queries used to
train the GP in the single-electrode space). This means that
our algorithm converges to the true best stimulation pattern,
namely (c1,c2,∆t) = ([1,1], [1,0],60), out of a possible 300
(100 channel pairs and 3 time delays ∆t) with only 40 total
queries. Due to this stimulation pattern having a response
much larger than other channels (0.041V, whereas other high-
responding patterns are around 0.030V), we believe this met-
ric (which focusses on the very best channel) to be a good
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(a) Temporal co-activation target for objec-
tive function. To get a scalar objective, we
translate r4 by τ, sum the responses and
take the max. Eq. (1)
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(b) We plot the mean and std accu-
racy of our method compared to stan-
dard gp at finding the best stim pattern
([1,1], [1,0],60), in 25 repeated trials.
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(c) Temporal co-activation found by our
method. We set τ = 40, and our algorithm
finds this co-activation with stimulation de-
lay ∆t = 60.

Figure 2: Objective and Results

measure of success. In other words, any other stimulation
pattern would not have resulted in a movement as obvious
and well-defined as this one. We show in Fig. 2c the resulting
co-activation found.

Conclusion and Discussion

We showed that the hierarchical approach to build GPs on
the space of multi-electrode stimulation is a viable one. Not
only does it far outperform the standard GP approach, show-
ing great potential for use in stroke recovery, but it can also
be used online to find the optimal stimulation strategy for a
desired co-activation output. This is a step forward in linking
brain activity and behavior by being able to control neurons
directly (Alivisatos et al., 2013).

The most novel and interesting part of our work is the ability
to control and elicit complex movements online. We used a
restricted stimulation search space for data collection purposes,
and clearly demonstrated faster learning using our approach.
Future work will focus on testing this algorithm online, using
all of the 96 electrodes in the Utah array of our example setup,
which will require a stopping criterion for the single electrode
space search.

We made a few simplifying modeling assumptions, which
could easily be improved upon, though we are unsure whether
this will be necessary. For one, we assumed homoscedastic
noise, whereas biology is better described by Poisson noise.
Second, we trained the different EMG GPs (for each ri) inde-
pendently, whereas they are clearly correlated (see Fig. 1b),
and could share information through multi-output (also called
co-Kriging) models. Thirdly, using a non-stationary kernel could
accelerate the search even more. This would allow having a
large lengthscale for most of the search space, yet have a
smaller lengthscale near optimal stimulation patterns to permit
finding the true maximum.

Finally, we note that our method can easily be adapted to
more complex objective functions such as incorporating both
forelimb and backlimb movements, and to different sensor
modalities such as accelerometer data or 3D position using
cameras.
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