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Abstract: 
Very little is known about how individuals learn under 
uncertainty in social contexts. Given that social 
information is especially noisy and ambiguous, we 
propose that humans are particularly tuned to social 
uncertainty, which may be exacerbated in those who are 
uncertainty-sensitive. For example, anxious individuals 
generally report lower tolerance of uncertainty, which 
may be further heightened in social contexts. We 
employed a Bayesian-RL model in a dynamic Trust Game 
and matched slot machine task to probe reward learning 
dynamics across social and nonsocial domains. We find 
healthy subjects are particularly good at learning under 
negative social uncertainty (e.g., potential monetary 
losses imposed by others), as this buffers an individual 
from being exploited, which results in swiftly learning 
when to stop investing in an exploitative social partner. In 
contrast, anxious subjects showed equivalent sensitivity 
for monetary gains across both social and nonsocial 
contexts and thus sub-optimally overinvested in others. 
In addition, those with anxiety had difficulty in adjusting 
their learning rates as the task dynamics shifted. Our 
results suggest that humans are particularly tuned to 
negative social uncertainty, which likely facilitates 
adaptive social learning.  
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Introduction 
The constantly evolving nature of real-life 
environmental contingencies results in action-outcome 
pairings that are often ambiguous and dynamic (Niv, 
Duff, & Dayan, 2005; Payzan-LeNestour & Bossaerts, 
2011). In social situations, this is likely to occur with 
high frequency, as social information is often sparser 
and noisier compared to information acquired in 
nonsocial contexts (FeldmanHall & Shenhav, 2019). 

Yet, humans appear to be remarkably adept at learning 
these hidden states (e.g., another’s intentions and 
motivations) in the social domain. If uncertainty is 
accentuated in the social domain, it would suggest a 
greater need to rely on generative models to make 
inferences about the environment. However, very little 
is known to date about the computational dynamics of 
social learning. Given the importance of social 
relationships to an individual’s prospects and 
opportunities for wellbeing (e.g., more social partners 
and resources; Barkow, Cosmides, & Tooby, 1992), it 
is possible that humans are uniquely tuned to the 
subtle fluctuations in uncertainty encountered in social 
settings and are therefore quicker to adjust their 
learning from monetary losses imposed by others (e.g., 
negative prediction errors). If this is the case, then 
those that are particularly averse to uncertainty (i.e. 
those suffering from anxiety; Browning, Behrens, 
Jocham, O'Reilly, & Bishop, 2015) may be 
disproportionately perturbed—and therefore slower to 
learn—from negative prediction errors encountered 
during social exchanges. 

Methods 

Experimental Design 
To test our learning predictions across social and 
nonsocial contexts, we used a modified version of the 
well-vetted trust game (TG) paradigm with a matched 
nonsocial analog task (within-subjects, 
counterbalanced). On each trial of TG, subjects were 
endowed with $1.00 and paired with one of three 
players. They were asked how much of the $1.00 they 
wanted to invest using a slider bar set in $0.10 
increments (Figure 1a). Endowments were quadrupled 
when sent to the other player, who could then decide 
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how much (if any) money they wanted to return to the 
subject (actually a preprogrammed algorithm; Figure 
1b). All aspects of the task were exactly matched 
between the social task (TG) and a nonsocial slot 
machine (SM) task, except for the social component. 
The task involved change points to elicit positive 
prediction errors (monetary gains) and negative 
prediction errors (monetary losses).  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All data was collected on Amazon Mechanical Turk (N 
= 354, 53.1% female, age range: 18-45, Mean = 34.53 
yrs). Based on the GAD-7 Scale, 97 subjects reported 
clinically-significant symptoms of Generalized-Anxiety 
Disorder.  

Computational Model  
In our computational analyses we compared three 
distinct models that differed in their degree of 
psychological relevance. Our primary model of interest 
was a 6-parameter Dynamic Bayesian RL (DB-RL) 
model that captures flexibility in learning (i.e. ability to 
adjust one’s behavior in a non-stationary environment) 
and sensitivity to trial-to-trial changes in uncertainty 
(Daw, Niv, & Dayan, 2005; Franklin & Frank, 2015). The 
DB-RL model represents subjects’ current beliefs 
about the payoff-maximizing strategy implemented on 
each trial. Subject beliefs are summarized by a beta 
distribution, which includes both the mean and the 
uncertainty about beliefs which are separately updated 
with each positive or negative outcome.  

 
Because our task involves change-points (e.g., the 

trustworthy-start player depicted as the dark blue line 
in Figure 1b, who slowly shifts from always 
reciprocating to always defecting as the task 
progresses), subjects should down-weight past 
outcomes over the course of the task, which in turn 
increases the overall uncertainty in the posterior 
distribution and allows more recent trial-level feedback 
to be more informative than past outcomes. A decay 
parameter γ was fit for each subject to estimate their 
degree of learning flexibility (low γ =	more decay), 
separately for positive and negative outcomes 
(γ$%&	and γ'(), respectively).  We further allowed the 
decay to increase as uncertainty increases about the 
other player’s strategy (e.g., when the strategy 
changes: quantified as entropy H in the posterior 
distribution; Franklin & Frank, 2015).     

 
Formally, we modeled	γ*	and	γ+ for positive and 

negative outcomes as separate free parameters to 
account for valence-dependent asymmetries, using a 
logit transform to maintain a 0-1 range.  

 
𝑙𝑜𝑔𝑖𝑡1𝛾3456 = 	 γ*789 +	γ+789 ∙ ∆𝐻 
𝑙𝑜𝑔𝑖𝑡1𝛾>?@6 = 	γ*ABC +	γ+ABC ∙ ∆𝐻 

 
We predicted that our DB-RL model would best 

capture learning in healthy subjects but that subjects 
with anxiety would not efficiently use the change points 
(where uncertainty is greatest) to appropriately adjust 
their learning. To account for these potential 
differences, we compared the fit of DB-RL with 
simplified Bayesian RL that was equivalent in all 

Figure 1. Depiction of task structure. Fig. 1a 
illustrates the trial structure of the Trust Game and 
matched slot machine game. The graph in Fig. 1b 
displays the preprogrammed algorithm underlying 
monetary returns for each online player in the Trust 
Game and each machine in the slot machine game. 
The y-axis of the graph corresponds to the proportion 
of the investment that was returned to the subject on 
a given trial. Subjects rotated through engaging with 
each online player once every three rounds and 
played a total of 28 rounds with each online player. 
The grey dotted line partitions trial types into net gain 
and net loss trials. The shaded areas around player 
returns correspond to a 4% uniform boundary, in 
which actual returns were randomly drawn from the 
corresponding return interval. Critically, all players 
were exactly monetarily equivalent in summed 
returns over the course of the game.  
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respects, except that it was modeled without γ+ and 
∆𝐻 parameters. Additionally, we compared the fit of 
both models to standard RL.  

Results 

Behavioral Results  

Anxiety subjects overinvested in TG players 
compared to healthy controls, particularly when 
reward dynamics were downward-trending. Figure 2a 
shows mean investments broken out across net gain 
(positive valence) and net loss (negative valence) trials 
by task block (4 trial bins). Effectively, anxious 
subjects gave significantly more money during 
negative valence blocks for both the neutral start 
player (RMANOVA for neutral start player investments, 
healthy vs. anxious × valence: F(2,704) = 4.30, p = 
0.024) and the trustworthy start player (RMANOVA for 
trustworthy start player investments, healthy vs. 
anxious × valence: F(2,704) = 6.35, p < 0.004), and 
therefore were slower to learn when to stop investing 
in an exploitative social partner. This suggests that 
anxious individuals are slower to learn the statistics of 
negative outcomes relative to healthy controls.  

Computational Results 
Using Bayesian model selection, we compared the 
relative fit of DB-RL, B-RL, and RL, finding DB-RL to 
be the winning model for healthy subjects (pxp > 0.99). 
However, when models were individually compared 
using pairwise comparisons for the anxiety group, 
there was no clear model-fit difference between DB-RL 
and simplified B-RL (SM pxp = 0.54, TG pxp = 0.56), 
indicating that anxious subjects were fit equally well by 
both DB-RL and B-RL models. Thus, the DB-RL model 
did not do a better job of capturing behavior in anxious 
subjects when compared to simplified Bayesian-RL. 
This suggests that healthy subjects were in fact, using 
fluctuations in environmental uncertainty to adaptively 
guide learning, whereas anxious subjects exhibited 
these effects to a lesser degree.   

Accordingly, to further examine whether individuals 
with anxiety were able to learn about the drifting 
reward statistics of the environment in the same way 
as healthy controls, we directly compared the decay 
rate across groups. We assessed whether these 
groups would exhibit differences in the decay of past 
positive versus negative experiences (𝛾*789 −	𝛾*ABC). 
Because decay allows for flexibility in updating one’s 
learning rule, overweighting past rewards relative to 
losses (𝛾*789 >	 𝛾*ABC) biases one towards consistently 
overinvesting. Conversely, perseverating on past 

losses relative to rewards produces a bias towards 
under-investing (𝛾*ABC > 	𝛾*789 ).  

While both healthy and anxious subjects showed a 
general bias towards weighting rewards more heavily 
than losses in SM game compared to TG (𝛾*789 >
	𝛾*ABC; F(1,352) = 12.94, p < .001; Figure 2b) resulting in 
overinvesting, only healthy subjects selectively 
adjusted their learning in the TG by demonstrating a 
greater likelihood of weighting losses more heavily than 
rewards (𝛾*ABC > 	𝛾*789).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

a.  

Figure 2. Behavioral and computational modeling 
results. Fig. 2a shows learning curves for healthy and 
anxious subjects. The y-axis of the graph indicates 
mean investments in TG and SM per block (4 trial 
bins, indicated on the x-axis). The angled grey line in 
each panel corresponds to the rescaled proportion of 
return that the agent was set to per block (rescaled 
and transposed from Figure 1b). The pale green and 
light grey panels correspond to negative and positive 
valence blocks, respectively. Fig. 2b shows mean and 
standard error estimates of decay rate difference 
(𝛾*789 −	𝛾*ABC) across healthy vs. anxious groups. 
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The results reveal that overall, context selectively 
moderates the impact of valence on reward-learning in 
healthy subjects (Mixed design ANOVA, healthy vs. 
anxious × condition: F(1, 352) = 4.14, p = 0.042). Post-
hoc pairwise comparisons further revealed that there 
was a significant difference in decay rate between 
healthy and anxious subjects in the TG (t(352) = -2.57, 
p = 0.011), whereas no differences emerged in the slot 
machine game (t(352) = -0.045, p = 0.96).  

Discussion 
Although learning and uncertainty are tightly coupled, 
little is known about how this relationship unfolds in the 
social domain. Understanding the dynamics of learning 
under social uncertainty is especially pertinent given 
that social interactions are particularly noisy and 
ambiguous. According to past work, social and 
nonsocial reward learning are governed by largely 
overlapping neural circuitry, suggesting that social and 
nonsocial cognition arise from parallel computations 
(Behrens, Hunt, Woolrich, & Rushworth, 2008).  
 
 In the work presented here, we find that this may not 
strictly be the case. By comparing social and nonsocial 
learning under uncertainty we found that healthy 
individuals exhibit asymmetrical learning profiles 
across contexts: in the slot machine task, healthy 
subjects showed a distinct pattern of overweighting 
rewards relative to losses which resulted in 
consistently overinvesting in trials that had negative 
prediction errors. Conversely, in the social domain, 
healthy subjects switched their learning strategy, such 
that they were more likely to weight losses more heavily 
than rewards, suggesting that healthy subjects were 
highly sensitive to exploitative behavior and were 
quicker to learn to stop investing. 
 
 In addition, these data provide the first evidence that 
we are aware of showing that people can selectively 
adjust learning across contexts to avoid social 
exploitation. Although previous work in the nonsocial 
domain illustrates that individuals with trait anxiety 
have difficulty learning the statistics of volatile reward 
environments (i.e., learning flexibility is impaired in 
anxious individuals; Browning et al., 2015; Delgado, 
Frank, & Phelps, 2005), we show that these effects are 
exacerbated in the social domain. Together, the work 
presented here offers novel evidence that learning 
under uncertainty uniquely unfolds across social and 
nonsocial domains, providing a candidate mechanism 
for how learning under uncertainty varies as a function 
of the environment and uncertainty sensitivity.  
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