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Abstract

Perceptual decision making is typically described with
classical models (Signal Detection, Bayesian Decision,
and Drift Diffusion Models) that distinguish modules
for sensory processing, decision making and additional
post-decisional processes with separate bias terms for
each module. At the behavioral level, animal and human
decision making 2-AFC studies provide ample evidence
for choice-biases during such tasks. A subset of these
biases are history-dependent and can be directly linked
to the rewards, responses and stimuli, but the origin of
the other subset of fixed history-independent biases in
these tasks is still largely unknown. Here, we investi-
gated whether these fixed biases could originate from the
decision module as defined by the classical models or
they must be related to post-decisional processes. We
designed an interaural amplitude discrimination task with
rodents, with the amplitude difference and the maximum
intensity level modulated simultaneously, and found that
the performance of all rats decreased asymmetrically at
the two response sides as a function of decreasing inten-
sity level. Through computational analyses, we show that
these fixed biases cannot be explained within the deci-
sion module and are only compatible with post-decisional
biases.
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making, lapse rate, sensory uncertainty

Introduction

Perceptual decision making is widely investigated by 2-AFC
tasks. A general finding is that during such experiments, ob-
servers show a number of deviations from optimal decisions.
Some of these deviations have been traced back to the effect
of stimuli, decisions and reward history and can produce either
positive or negative biases (Fritsche, Mostert, & de Lange,
2017). Some other biases have been linked clearly to motor
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origin (Wichmann & Hill, 2001). However, there exists a well-
known and prominent subset of biases, encountered mostly
in rodent behavioral experiments, the origin of which has not
been identified yet. These are called fixed biases since they
cannot be directly associated with the stimuli or reward of the
individual trials, they typically do not change across sessions,
and they seem to be specific to the individual. Despite their
abundance, these fixed biases were not investigated system-
atically in the literature, rather they were treated as a nuisance
that needed to be eliminated by adaptive balancing of the stim-
uli (Piet, Hady, & Brody, 2018). While such a treatment is rea-
sonable, identifying the origin of these biases is necessary for
a deeper understanding of decision making processes. As a
first step, we investigated whether the fixed bias originates
from decision processes or it is related to post decisional-
processes.

In order to investigate the origin of fixed biases, we se-
lected the three most widely used computational frameworks
for treating perceptual decision making: Signal Detection The-
ory (SDT), Bayesian Decision Theory (BDT), and Bounded
Evidence Accumulation (BEA) or Drift Diffusion Model (DDM).
All of these frameworks (in their basic forms) make three key
assumptions about decision making. (1) The observer ab-
stracts the task relevant information of the stimuli (e.g. con-
trast difference in a contrast discrimination task) and trans-
forms it into sensory evidence (which is the abstracted and
transformed task relevant information of the stimulus) through
a transduction function. (2) The representation of the sensory
evidence is inherently noisy. (3) There is a decision process
that forms decisions based on the sensory evidence. In most
cases, this process assumes that the transduction function is
either linear or follows a power function, and that the noise on
the sensory evidence is Gaussian (Palmer, Huk, & Shadlen,
2005). In all three frameworks, the decision process follows
a deterministic rule, in which the observer sets a criterion for
the minimal amount of sensory evidence (which is equivalent
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to MAP decision in the Bayesian framework) that is needed to
choose a certain response alternative (below which the alter-
native is not selected). BEA models the temporal dynamics of
the process, while SDT and BDT do not, but from the perspec-
tive of accuracy data in 2-AFC tasks (which we consider here),
the three frameworks have very similar predictions. Assuming
Gaussian noise on the sensory evidence, and a transduction
function F(S) the probability of choosing category one given
the stimulus (the psychometric curve) is:

P(R=1[S)=2(F($)-1) M

where @ is the cumulative normal distribution function, S is the
stimulus, F(S) is the transduction function, and A is the deci-
sion criterion parameter, which contains the prior knowledge
and loss function in the Bayesian frameworks. In the BEA
framework we need to assume an unbounded accumulation
of evidence for Eq.1 as observed in fixed-duration stimulus
categorization in rodents, (Brunton, Botvinick, & Brody, 2013).

Classical choice biases can have sensory or decisional ori-
gin. Sensory biases can emerge for example when the F(S)
transduction function is asymmetric at the low and high end of
the sensory dimension. Under the assumptions of the classi-
cal models, these biases modulate the mean value of the sen-
sory evidence, therefore their effect on the performance can
be captured by a lateral shift in the psychometric curve. Bi-
ases related to decision are represented by a single decision
criterion parameter (L) which, similarly to sensory biases, can
only shift the psychometric curve horizontally. Therefore, the
classical formalism implies that all choice biases (not related
to post-decisional processes), including prior knowledge, de-
cision criterion, and loss functions reflecting the history of the
rewards, costs, responses, stimuli, and the frequency of the
categories in the task at hand can produce only shifts in the
psychometric curve. It is unclear how fixed biases enter this
picture. If they tend to scale rather than shift the psychometric
curve, they would not be possible to integrate in the classical
framework. Instead, these fixed biases then might be related
to post-decisional processes such as biases during translation
of the decision into motor response (Erlich, Brunton, Duan,
Hanks, & Brody, 2015). This conjecture is supported by the
fact that the fixed choice bias, by definition, is not related to
the history of the task parameters, and thus it is different from
the effects typically summarized in A of the decision process.
In this study, we hypothesize that rats fixed choice biases are,
indeed, related to post-decisional and not to decisional pro-
cesses. In order to test this, first, we extended the classi-
cal models (Eq.1) with a post-decision bias term, and com-
pared the classical and the extended version of the models in
terms of their ability to shift vs. scale the psychometric curve.
Second, we collected data with rodents using a 2-AFC task
measuring rather than compensating for fixed biases, and in-
vestigated whether the classical or the extended model could
predict the experimental results better.

We extended the classical models by adding a post-
decision bias term that influences only the response without
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influencing the category of the stimulus, the decision rule, or
the sensory evidence (Fig.1). Since  representing the fixed
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Figure 1: Extended model. F(S) is the transduction function,
o is the sensory noise, A represents the Normal distribution,
and L is the lapse rate. ® the pos-decision bias scales while
the rest of the biases () shifts the psychometric function.
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Figure 2: Modulation of accuracy as a function of increasing

choice bias (A) in the classical models at four different levels
of sensory uncertainty (c). Lapse rate = 0.1.

bias in this model is separated from the decision module, the
extended module, in principle, is better suited for capturing
the scale effect of the psychometric curve. In practice how-
ever, it is very hard to distinguish between the classical and
extended models using accuracy data due to the fact that the
scaling of the psychometric curve can be attributed not only to
post-decision bias (®) but to lapse rates (errors independent
of sensory evidence). In order to compare the two models,
we turned to the fact that, the psychometric curve can scale
asymmetrically, and while this can be achieved by both lapse
rates and fixed biases, the underlying constraints of such a
scaling are different in the two models. Specifically, if the sen-
sory noise (o in Fig.1) is modulated during the experiment,
it will modulate the psychometric curve symmetrically at both
response alternatives assuming no post-decision bias (Fig.2),
while the same curve will be modulated asymmetrically at the
two response alternatives if a post-decision bias exists (Fig.3).

Methods of the behavioral task

Rats performed 2-AFC interaural amplitude discrimination
task (Fig.4), in which they had to decide whether the left or
the right speaker produced a louder noise. In the experi-
ment, we simultaneously modulated the ratio of the left-right
amplitudes (201log,Ar/Ar) and the maximum intensity level
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Figure 3: Modulation of accuracy as a function of increasing
post-decision bias () in the extended at four different levels
of sensory uncertainty (c). Lapse rate = 0.1.

((Ar +AL)/2) of the noise stimuli. Based on recent find-
ings (Pardo-Vazquez, Castineiras, Valente, Costa, & Renart,
2018), we reasoned that the intensity of the stimulus, similar
to the level of contrast in vision, influences the uncertainty in
perception independently of the task relevant stimulus feature.
Pardo-Vazquez et al. (2019) found that the intensity level does
not modulate the accuracy if the stimulus is available until the
response is made indicating a Weber’s law in amplitude dis-
crimination task. To observe the decrease in accuracy due to
the decrease in intensity we fixed the duration of the stimulus
at the range where the Weber’s law breaks down.
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Figure 4: 2-AFC, fixed-duration, interaural amplitude discrimi-
nation task.

Results

The accuracy of the rats was modulated by the maximum in-
tensity level of the sounds in the amplitude discrimination task
(see the lines with different colors in Fig.5). Furthermore, the
performance of the rats decreased significantly less on the
preferred reward side than on the other, ‘anti-preferred reward
side due to the decrease in intensity (comparing the effect of
the intensity on the regression weights at the two response
sides: Rat1, Z =31.6, P < 0.01; Rat2, Z =41.9, P < 0.01;
Rat3, Z = 31.9, P < 0.01; Fig.5). This asymmetric perfor-
mance modulation on the two sides due to the changing inten-
sity level suggests a post-decision bias. However, an alterna-
tive interpretation of these results assuming that the maximum
intensity level and the left-right amplitude ratio modulates the
performance through a multiplicative interaction could also
produce asymmetric performance modulation as the intensity
level changes. To compare the model assuming multiplica-
tive interaction with the model assuming post-decision bias,
we fitted the accuracy data with both models. We found that
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Figure 5: Modulation of the psychometric curves as function
of the intensity levels. The lines show separate cumulative
Gaussian fits with two lapse rates in each intensity conditions,
colors representing the different intensity levels. X axis: the
ratio of the amplitudes on the two sides. A, stands for ampli-
tude from the left while A represents the amplitude from the
right speakers. Y axis: probability of right response. These
descriptive fits only represent the results of the experimen-
tal manipulation without assuming an underlying computation
model. The shaded areas show the 95% confidence intervals
around the maximum likelihood fits.

the model assuming post-decision bias provides much better
fits to the data than the model assuming multiplicative inter-
action in all rats (Rat1: AAIC=67.6, ABIC=73.8, log0BF =
25.0; Rat2: AAIC=18.4, ABIC=24.4, logoBF = 0.9, Rat3:
SAIC=57.6, ABIC=63.6, logioBF = 15.8, where the Bayes
factors of the models were estimated by the likelihood eval-
uated at the maximal likelihood parameter set divided by the
square root of the log-determinant of its local Hessian; Fig. 4).

Discussion

We found that the decrease in the overall intensity level of
the noise stimuli asymmetrically modulated the performance
of rodents at the two reward sides during our interaural am-
plitude discrimination task. More specifically, as stimulus in-
tensity dropped, the performance only minimally decreased
at the preferred reward side while it decreased substantially
on the reward side that the rats did not prefer. These re-
sults were best captured by the model that assumed a post-
decisional origin for the fixed bias (Fig.1). This suggests that
rats’ fixed, history-independent choice biases might be re-
lated to post-decisional processes rather than to classical de-
cisional processes that evaluate sensory evidence. Distin-
guishing between different types of choice biases based on
accuracy data of 2-AFC tasks is a rather challenging prob-
lem (Linares, Aguilar-Lleyda, & Lopez-Moliner, 2019). Nev-
ertheless, our method demonstrates that post-decisional bi-
ases can be distinguished from lapses and other biases even
in simple 2-AFC tasks by modulating additional stimulus at-
tributes that influence the uncertainty (or noise) during per-
ception. It is worth noticing that according to our results, We-
ber’s law broke down only at 400 ms stimulus duration with the
range of intensity level varying between 12-55 dB. In a simi-
lar interaural amplitude discrimination task by Pardo-Vazquez
et al. (2019) using the intensity range of 20-60 dB, Weber’s
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Figure 6: Model fits. Top: The classical model formalized in
Eq.2. Middle: The multiplicative interaction model formalized
as Eg.2 where an interaction between the amplitude ratio of
the left-right sounds and the maximum intensity level is as-
sumed in the F(S) function. Bottom: the post-decision bias
model formalized in Fig.1. The colored shaded areas show
the 95% confidence intervals around the maximum likelihood
fits. We used the ‘profile likelihood’ method to compute the
confidence regions. Note that although the prediction for in-
tensity conditions are shown separately (the colored lines) all
intensity conditions were fitted together in the models.

law already started to break down around 250 ms stimulus
duration. This co-variation between duration, intensity and
Webers law provides additional support for a causal and pro-
portional link between the two characteristics of the stimulus
and perception. A recent study linked lapse rates to explo-
rations suggesting that as uncertainty increases across de-
cisions, rats’ behavior becomes more explorative and hence
lapse rates increase (Pisupati, Chartarifsky-Lynn, Khanal, &
Churchland, 2019). Expanding this proposal that lapse rates
indicate exploration with the idea that rats’ exploration graded
by the level of uncertainty at a given side, one could interpret
our results in a model that assume asymmetrical modulation
of lapse rates as a function of the intensity level instead of as-
suming a post-decision bias. While in principle, this alterna-
tive can capture our results, it has a couple of shortcomings in
terms of parsimony. First, this interpretation should predict a
symmetric change on the two reward sides since uncertainty

on the two sides was modulated equally with the intensity
level of the sounds. Any extra assumption about asymmetric
uncertainty would require further justification. Second, while
our proposed model is exceedingly simple since it assumes
only one additional bias parameter outside the decisional pro-
cess (formalized using the classical frameworks), the alterna-
tive model would require a number of extra parameters in the
model as the function of sides and levels of uncertainty. Until
now, researchers treated fixed biases as a nuisance param-
eter that they eliminated by modulating the statistics of the
reward and stimuli during the task. While this practice is ef-
fective in terms of balancing the measurable parameters, it
hides away factors of the decision process and leave the ef-
fects of the forced counterbalancing uncontrolled. An alterna-
tive approach is to understand the complex structure of the
task that the overtrained animals learn and gain a fuller de-
scription of their acquired internal model that determine their
behavior. Here we provide an important first step along this
path by showing that the fixed biases in behavior of rodents is
related to post-decisional processes.
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