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Abstract
Echolocating organisms ensonify their surround-
ings, then extract object and spatial information
from the echoes. This behavior has been observed
in some blind humans, but the computations under-
lying this strategy remain extremely poorly under-
stood. Here we tracked the movements and echo
emissions of an expert blind echolocator perform-
ing a target detection and localization task. We
found that the precision of responses as well as tar-
get acquisition movements depended significantly
on the size of the target and availability of active
echo cues. The distribution of click directions sug-
gested that the maximal energy of each click was
always directed at the target. Our results pave the
way toward characterizing human echolocation in
the context of other active sensing behaviors, con-
straining the types of perceptual mechanisms medi-
ating its behavior, and at a practical level, building a
quantitative evidence base for optimizing therapeu-
tic training interventions.
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Introduction
In the absence or insufficiency of vision, the critical func-
tion of perceiving and interacting with the environment
falls to nonvisual sensory modalities. In the auditory
domain, many species have developed active echolo-
cation: they ensonify their surroundings, then extract
object and spatial information from the echoes. In addi-
tion to well-known examples such as bats and dolphins,
some blind humans use active echolocation as a per-
ceptual method. While ensonification methods vary, the
typical oral signal is a sharp palatal or alveolar ”click”
produced with the tongue.

A growing body of recent as well as historical work on
human echolocation comprises reports of psychophysi-
cal performance, acoustic signal properties, and neural
correlates (Kolarik, Cirstea, Pardhan, & Moore, 2014).
However, virtually the entire literature reports perfor-
mance measures such as spatial acuity (Teng, Puri, &
Whitney, 2012) but does not characterize the behav-
ioral (or neural) process by which that performance is

achieved. Thus, with few exceptions, it remains al-
most totally unknown exactly how an echolocator goes
about, e.g., detecting and localizing a nearby object.
By contrast, extensive scientific attention has been di-
rected to humans’ visual exploration of a scene via eye
movements (Yang, Lengyel, & Wolpert, 2016; Yang,
Wolpert, & Lengyel, 2016), and echolocation behavior
in nonhuman species such as bats (Yovel, Falk, Moss,
& Ulanovsky, 2010). Characterizing human echoloca-
tion in this way would place it in the context of other ac-
tive sensing behaviors, constrain the types of perceptual
mechanisms mediating its behavior, and at a practical
level, could serve as a basis for optimizing therapeutic
training interventions.

To this end, here we measured the time course of mo-
tor behavior (head movements and click emissions), the
subsequent sensory input (auditory echo returns), and
the resultant performance (azimuthal response accu-
racy and precision) as an experienced blind echoloca-
tion practitioner performed an echoic target acquisition
and localization task. We show that both performance
accuracy as well as target acquisition (head movement)
behavior are affected by the size of the target and the
availability of actively generated click information, and
that human echo-acquisition strategy is likely different
from that of clicking bats.

Methods
Participant
The participant, EB, is a male, highly proficient daily
echolocation practitioner, age 53 y, completely blind
since infancy. EB provided informed consent in accor-
dance with protocols approved by the Smith-Kettlewell
Institutional Review Board.

Apparatus, Stimuli, and Task
The experiment was conducted in a soundproof,
double-walled sound-attenuating booth (IAC Acoustics,
see Fig. 1). Using a ceiling-mounted rod revolving
around an axis directly above the participant’s chair, the
experimenter presented a reflecting target at a range
of azimuths between -100◦and +100◦relative to EB’s
heading (i.e., a region slightly exceeding the subject’s
frontal hemifield). The target was a rectangle of 1-cm-
thick cardboard, covered with aluminum foil, and mea-
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Figure 1: Experimental room and setup. Participant is
seated in the center, experimenter standing behind to
manipulate stimuli. Rod and attached echo reflector
(blue) are mounted to ceiling. Dashed semicircle de-
lineates approximate range of stimulus azimuths. Gray
box indicates approximate field of view of video camera
(see Methods, Fig. 2).

suring 29 cm wide by 36 cm tall (”Big Target”). Mounted
1 m away from the center of rotation, it subtending
17◦azimuthally from the rod’s center of rotation. In a
more difficult block the target was much smaller, a strip
measuring only 2.5x17 cm (”Small Target”), subtend-
ing 1.4◦azimuthally. Each trial began with the subject
pointed straight ahead (0◦) with ears covered. Upon trial
initiation via shoulder tap from the experimenter, EB be-
gan the task of detecting and localizing the reflector as
accurately as possible, indicating its position via head
orientation and button press. Additionally, we included
a control block of trials in which EB had to perform the
task without the benefit of any active clicks. To balance
experimental control with ecological validity, we did not
fix EB’s head, but tracked its position and orientation
while he remained seated in his chair. In total, EB per-
formed 108 large-target trials, 45 small-target trials, and
27 no-click control trials over three sessions spanning
two days.

Data Acquisition and Processing

Sessions were recorded with a video camera (Hero5
Session, GoPro Inc.) at 60 Hz and 1920x1080 reso-
lution, with audio recorded at 48 kHz for click extrac-
tion. Additionally, we recorded audio via binaural in-ear
microphones and a digital recorder (SP-TFB-2, Sound
Professionals; DR-2D, Tascam) at 96 kHz and 24 bits to
capture subject-centered click and echo acoustic prop-
erties for further analysis.

Head and Target Tracking To monitor head pose
over time, we fitted the participant with a cap display-
ing an ArUco marker, a binary matrix image used for
fast detection and pose estimation within the OpenCV
framework (Garrido-Jurado, Muñoz-Salinas, Madrid-
Cuevas, & Marı́n-Jiménez, 2014; Bradski, 2000). Ad-
ditionally, the rod holding the echo reflector was affixed
with a red direction indicator that was always within the
camera’s field of view. To minimize distortions arising
from misaligned camera position and rod center of ro-
tation (CoR), we used video from each block to esti-
mate the rod CoR empirically, as shown in 3. Finally,
when the subject indicated a response via button press,
a green LED was illuminated in a consistent potion of
the camera view. Thus, after calibrating video and mea-
suring physical dimensions, each frame of video pro-
vided enough information to extract the subject’s head
position and heading; the ground truth azimuth of the
target; the subject-relative azimuth of the target; the az-
imuth error (how far from target center the subject was
pointing); and whether a response had been made (see
Fig. 2).
Echoacoustic Tracking To align the subject’s click-
ing and self-motion behavior, we extracted the audio
recordings from each trial and analyzed amplitudes
within a 1001-sample (48-ms) sliding window. Using the
center value of the window as reference, we devised a
simple heuristic that flags the signal as a click if less
than 5% of the samples within the window are close in
amplitude to the reference value. This method allowed
to isolate clicks, that are characterized by a sharp peak,
from background and environmental noise. Candidate
clicks were then manually inspected and verified, and
aligned with the timestamps of the head motion data.

Figure 2: Framewise extraction of experiment parame-
ters from video. A. Yellow arrow: Subject head orienta-
tion from head-mounted ArUco marker. B. Green line:
Vector from subject head to target center. C. Green dot,
white line: Computed center of rotation and radial vector
to target center. D. LED indicating subject response.
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Figure 3: Estimating the Center of Rotation. We ex-
tracted the centroid of the rod (red dots) by segment-
ing it using several frames in which the target was po-
sitioned at different orientations. We used these points
to fit an ellipse, which allows us to the center of rota-
tion of the rod. A manual rectification of the center then
followed to correct noisy segmentation.

Behavioral Data Analysis For each trial, we col-
lected EB’s heading and the target heading at the time
of button press and then computed an azimuth error.
For each condition, we fit a Gaussian curve to the his-
togram of azimuth response errors using the histfit func-
tion in Matlab (The Mathworks, Inc.), extracting aver-
age error (µ) and standard deviation (σ) parameters and
95% confidence intervals (CIs) from the curve parame-
ters.

Results
Behavioral accuracy and precision
Fig. 4 shows azimuth response distributions by condi-
tion. As expected, EB performed more precisely when
actively ensonifying a large target vs a smaller target.
Interestingly, the average error in the Big Target con-
dition (6.0◦, CI 3.4-8.6) did not differ significantly from
that in the Small Target or No-Click conditions (4.5◦and
4.1◦respectively). However, the precision of responses
varied significantly, with standard deviations of 13.6 ◦(CI
12.0◦-15.7◦) for the Big Target condition, 32.3◦(26.7-
40.8) for the Small Target condition, and 45.9◦(36.1-
62.9) in the No-Click condition.

Head movement time courses
Preliminary analysis suggests that when ensonifying
targets with clicks, EB ’homed in’ on the target more pre-
cisely and quickly, taking less time per trial and travers-
ing a smaller range of azimuths in the process. Fig. 5
displays representative Big-Target and No-Click trials,
at the end of which EB indicated a response. The range
of relative azimuths after the first direction reversal (to
correct for the randomized initial relative position) spans
approximately 50◦in the Big-Target trial and 116◦in the

No-Click trial, and the No-Click trial lasted about twice
as long as the Big-Target click trial.

Summary and Conclusions
In this study we recorded and characterized, for the first
time, the pattern of target acquisition and localization in
a proficient blind human echolocation practitioner. We
show that precision of responses was sensitive to the
size of both passive (via the available target surface
area) and active (via the restriction of clicks) echoloca-
tion information, and that these manipulations did not
introduce a systematic overall bias into the response
distributions.

The term echolocation is not monolithic, but rather
comprises a family of behaviors and percepts that are
observer- and task-dependent. This work represents
an initial step toward characterizing not just observable
strategies, but likely acoustic and perceptual mecha-
nisms mediating this behavior. For example, Egyptian
fruit bats are among the few echolocating bat species to
click rather than ’chirp’ their echolocation calls, and dur-
ing a similar localization task, were found to ensonify
their target bimodally — slightly off-axis to either side
such that the target fell within the region of steepest
slope, rather than maximum intensity, of the click en-
ergy distribution (Yovel et al., 2010). Human echoloca-
tion clicks have been shown to be far less directional,
essentially isotropic within a roughly 60◦cone (Thaler et
al., 2017). In the present study, almost all EB’s clicks
to the large target were directed within 28◦to either side
of target center. Thus, our results are not consistent
with a maximum-slope localization strategy of the type
described by Yovel et al (2010).

Head position and click time courses suggest the mul-
tifold accuracy and speed benefit of active ensonifica-
tion and a robust echo signal, not only improving pre-
cision (4), but also reducing time to reported target ac-
quisition, the number of directional reversals, and the
range of azimuths traversed in the process (5).

Further analysis of our present data will facilitate a
more complete picture of echo-target acquisition in blind
expert humans, including an analysis of the loop be-
tween head motion, click emission, and the returning
binaural echo signal. Additionally, more data collec-
tion with other experts, blind non-experts, and sighted
control participants will allow us to characterize more
fully how echolocation expertise manifests under differ-
ent conditions and in different stages of training.
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Figure 4: Azimuth response distributions by condition. X axes represent headings relative to target azimuth (0◦is
an exact line to the target center). Parameters µ and σ denote means and standard deviations (in degree units),
respectively, of Gaussian fits to response histograms, with 95% confidence intervals in brackets.

Figure 5: Within-trial head movement time courses A. Representative Big-Target trial. Vertical green lines denote
click events. B. Representative No-Click trial. Y axes denote heading in degrees relative to target heading. X axes
indicate elapsed time (sec) in current trial block. Discontinuities in the trace are due to the inability to detect the
head marker from the video in the presence of partial occlusions.
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