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Abstract

A growing literature has highlighted a role for selective
attention in shaping representation learning of relevant
task features, yet little is known about how humans learn
what to attend to. Here we model the dynamics of selec-
tive attention as a memory-augmented particle filter. In
a task where participants had to learn from trial and er-
ror which of nine features is more predictive of reward,
we show that trial-by-trial attention to features measured
with eye-tracking is better fit by the particle filter, com-
pared to a reinforcement learning mechanism that had
been proposed in the past. This is because inference
based on a single particle captures the sparse alloca-
tion and rapid switching of attention better than incre-
mental error-driven updates. However, because a sin-
gle particle maintains insufficient information about past
events to switch hypotheses as efficiently as do partic-
ipants, we show that the data are best fit by the filter
augmented with a memory buffer for recent observations.
This proposal suggests a new role for memory in enabling
tractable, resource-efficient approximations to normative
inference.
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Introduction

Several recent studies have highlighted a role for selective at-
tention in shaping learning under uncertainty (Niv et al., 2015;
Marković et al., 2015; Mack et al., 2016; Leong et al., 2017),
but left open the question of how attention changes over time.
Here we suggest that selective attention during human re-
inforcement learning arises from sequential sampling of hy-
potheses about which features of a task are relevant. We
formalize this process as a memory-augmented particle filter
(Doucet & Johansen, 2009; Bonawitz et al., 2014; Speeken-
brink, 2016). Particle filters offer a tractable approximation
to rational inference and in the case of only a few particles,
resemble sequential hypothesis testing (Wilson & Niv, 2011).
The key idea of a particle filter is to represent the target prob-
ability distribution using a finite number of point estimates, or
particles. The ensemble of particles is dynamic: estimates
that are inconsistent with recent evidence are filtered out.
Over time, the ensemble comes to better approximate the tar-
get distribution. In general, the quality of the approximation in-
creases both with time, and with the number of particles. Here
we show that a single-particle model does well in capturing the
dynamics of human attention allocation, due to the sparsity of
the representation and the model’s ability to rapidly switch hy-

potheses about the identity of the reward-predictive feature.
But such sparsity is in tension with the main normative appeal
of particle filters, which is to treat the ensemble of particles as
approximating the exact posterior at each step.

One way to compensate for using fewer particles is through
the choice of proposal distribution for re-sampling particles. In
general, the closer the match between the proposal distribu-
tion and the target posterior, the better the approximation to
the posterior will be (Speekenbrink, 2016). In our task, the
proposal distribution defines an implicit switching rule for stay-
ing with the current hypothesis about which feature is more
predictive of reward, or switching to a different one. One sug-
gestion in a similar setting was to use the exact posterior as
the proposal distribution, effectively endowing the model with
the ability to switch hypotheses in proportion to the true poste-
rior probability (Bonawitz et al., 2014). But this is unrealistic as
a process-level model, since it relies on access to the very dis-
tribution the particle filter is attempting to approximate.

Here we replace this assumption with a novel memory mech-
anism that modifies the proposal distribution to incorporate a
set of the most recent observations. This modification both
solves the efficiency problem associated with single-particle
models and highlights a new role for memory in enabling ap-
proximate inference. We develop a method for fitting memory-
augmented particle filters to trial-by-trial eye-tracking data,
and compare the particle filter to a previous reinforcement
learning account of selective attention in a multidimensional
learning task. We find that the memory-augmented particle
filter more closely matches the trial-by-trial dynamics of atten-
tion allocation, suggesting a role for memory in guiding atten-
tion to task relevant features.

Experimental paradigm

We analyzed data from a multidimensional learning task in
which human participants were tasked with learning from trial
and error which of nine features was most predictive of re-
ward (Figure 1). On each trial, participants had 2 seconds
to select one of 3 columns, each including a face, a house,
and a tool. Choosing the column containing the target feature
(e.g. Einstein) yielded a reward with 0.75 probability. Choos-
ing any of the other two columns was rewarded with only 0.25
probability. All features were visible on every trial, with feature
combinations within columns determined randomly on each
trial. We defined each block of 20 trials as a ‘game’ during
which the target feature stayed constant. The target feature
randomly changed between games, and this was announced
to participants. Participants were instructed about the reward
contingencies before the experiment.
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Figure 1: Task. Participants had to learn from trial and error
which of 9 features was more predictive of reward.
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Figure 2: Sample attention dynamics for one game of the
task. Inset shows the looking patterns corresponding to the
first trial of the game. Within each trial, looking time was
binned and averaged across the spatially-resolved features.

In previous work, we demonstrated the viability of using eye-
tracking to measure trial-by-trial changes in attention to differ-
ent dimensions of the task (Faces, Houses or Tools; (Leong
et al., 2017)). Here we extend this approach by employing
high-frequency eye-tracking to derive a trial-by-trial measure
of feature-level attention (Figure 2).

Selective attention as particle filtering

We consider an environment in which multidimensional stimuli
vary along D dimensions (e.g. Faces). Each dimension can
take on F features per dimension (e.g. Einstein). Of the K =
D×F possible features f , target feature f ∗ yields reward with
higher probability than others: p(rt | f ∗t ) > p(rt |¬ f ∗t ), and in
particular, p(rt |¬ f ∗t ) = 1− p(rt | f ∗t ). On each trial, the target
feature changes to a random target with probability h.

Under the generative model defined above, we model partici-
pants as sequentially approximating the belief state p( f = f ∗)

using particle filtering (Figure 3). Instead of maintaining and
updating the full posterior distribution over f (Niv et al., 2015),
we assume that they keep track of a single particle Ht that rep-
resents their current hypothesis about the identity of the target
feature. Participants have access to observations of the form
Ot = {Ct ,Rt} – the choice and reward experienced on each
trial, which they can use to update their hypothesis.

Ht+1
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Figure 3: Graphical model of the particle filter. Nodes in
white represent latent hypotheses. Nodes in gray represent
given quantities. Blue squares denote fixed parameters of
the model. Solid and dotted lines distinguish between ob-
servations experienced by the participant during the task (i.e.
choices and rewards), and data that the experimenter gets
to observe (A reflects attention to the different features, mea-
sured empirically as looking times). p(Ft) is the proposal dis-
tribution, which depends on the current observation, the previ-
ous n observations from memory, and fixed parameters h and
pr.

Particle filters learn by sampling new particles from a pro-
posal distribution and filtering out particles that are inconsis-
tent with new evidence. Over time, particles settle on hypothe-
ses that in ensemble approximate the true posterior. Previous
work has shown that individual behavior in classic associative
learning experiments supports a model with a single particle
(Daw & Courville, 2008). But particle filters use the ensem-
ble of particles as a stand-in for the complete history of the
process (i.e., to approximate the posterior distribution at each
step), and a single particle is impoverished in that it does not
maintain enough history to evolve correctly over time. We
thus consider a class of memory-augmented particle filters in
which the proposal distribution at each time point is given by
the probability of being in each state, conditional on the cur-
rent state of the particle and the n most recent observations
(Figure 3, top equation). Locally computing this distribution
can be accomplished with a simple recursion (Ghahramani,
2001), since the dynamics of the particle correspond to the
latent state in a hidden Markov model with the transition ma-
trix defined by h, and the emission probabilities defined by
p(r| f ∗).
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The free parameter n can be interpreted as the memory ca-
pacity of the model. This relaxes the assumption that the pro-
posal process has access to the full posterior (Bonawitz et al.,
2014), and approximates it relying on a limited memory buffer
(which we associate with working or episodic memory) and
on the particle as a summary of the distribution prior to that.
Note that a similar proposal distribution could be achieved with
less computation by only consulting the memory to propose
where to switch following a reward omission (Bonawitz et al.,
2014).

Finally, fitting the model to empirical data requires a link func-
tion between the dynamics of the latent hypothesis and the
trial-by-trial measure of attention. Since our measure is pro-
portion looking time, we use the Dirichlet distribution, a gen-
eralization of the Beta distribution over N-dimensional com-
positional vectors (i.e. vectors of proportions that sum to 1)
(Figure 3, bottom equation). This likelihood function places
µ probability mass on the current hypothesis, and assumes a
fixed noise level ε > 1.

Alternative model: feature reinforcement
learning with decay

In previous work, we introduced Feature Reinforcement
Learning with decay (FRLdecay) as a candidate mechanism
for learning what to attend to in this task. The full model is de-
scribed in (Niv et al., 2015), but in brief, FRLdecay assumes
the participant learns a feature weight Wf for each of the nine
features. The predicted value for the chosen stimulus is the
sum of its feature weights. After each observation, the weights
of the chosen features are updated according to the difference
between the obtained reward and the predicted value (a ‘pre-
diction error’) multiplied by learning rate η. Weights of un-
chosen features decay toward zero in proportion to decay rate
d. We previously modeled dimensional attention as a softmax
over maximum feature weights in each dimension (Leong et
al., 2017). Here we model attention to each feature as a soft-
max over the vector of learned feature weights W , where the
inverse temperature β dictates how focused attention is on
features with larger weights:

φt(k) =
eβWt (k)

∑i eβWt (i)
(1)

As with the particle filter, we assign likelihood to the attention
data by using a Dirichlet distribution with parameters deter-
mined by the predicted feature-level attention.

p(At)∼ Dirichlet(µ×φt + ε) (2)

This likelihood function assigns probability mass out of a fixed
µ in proportion to the attention to each feature, and assumes
a fixed noise level ε > 1.

Fitting procedure

Maximum likelihood estimation (MLE) requires computing the
likelihood of a data sequence D1:T under a set of parameters
θ. While MLE is standard in reinforcement learning (Wilson
& Collins, 2019), evaluating the likelihood of data under mod-
els with stochastic latent states is typically intractable because
the state space of possible trajectories grows exponentially
with the number of trials (c.f. (Findling et al., 2018)). In our
case, since we cannot directly observe what hypothesis the
participant was considering at each time point, we need to
marginalize our uncertainty over H1:T . This again can be ac-
complished efficiently for the current model using the forward
algorithm for inference in hidden Markov models.

To optimize the parameters of the particle filter, we maximized
the likelihood via grid search across h and pr bounded be-
tween 0.001− 1 in increments of 0.02, given values of n ∈
{0,1,2,3,4,5,6}. For the FRLdecay model, we computed the
log likelihood across η and ηk bounded between 0.001−1 in
increments of 0.02, given values of β ∈ {5,10,20,30,40,50}.
For both models, µ and ε were fixed to 4 and 1.1, respectively.
Maximizing across the different likelihoods thus yielded esti-
mates that are adequately matched with respect to the num-
ber of parameters.

Results and discussion

We first investigated whether the particle filter can reliably re-
cover the structure of the task (Figure 4). We simulated the
choice behavior of particle filter agents with different memory
capacities on the same stimulus sequence as human partici-
pants were exposed to. For illustration, we fixed h at 0.001 and
pr at 0.99, to compensate for the assumption that h does not
exactly match the generative dynamics of the task (i.e there
are no unsignaled changes in the target feature). We gener-
ated the agent’s choices using a greedy choice rule (i.e. the
model always chooses the stimulus containing the current hy-
pothesis). The performance of the model increased with mem-
ory capacity, and approached human performance for the 5-
back condition both in terms of speed of learning (Figure 4
top) and accuracy on the last 6 trials of a game (Figure 4 bot-
tom).

We then compared the performance of the particle filter and
FRLdecay models in predicting trial-by-trial fluctuations in se-
lective attention (Figure 5). We found that the particle filter
outperforms FRLdecay for every participant, suggesting that
shifts in attention are more consistent with hypothesis testing
than with gradual error-driven learning (Figure 5A). We also
found significant variability in the estimated memory capacity
of the particle filter (Figure 5B).

Taken together, these results support the idea that approx-
imate inference over task-relevant features guides selective
attention during trial and error learning. We propose a
new mechanism by which memory of recent experiences in-
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Figure 4: Model performance. Top left: learning curves for
21 participants. Performance was assessed as the proportion
of trials in which the participant chose the stimulus containing
the target feature. Top right: learning curves for a simulated
particle filter agent with different memory capacities. The Win-
Stay-Lost-Shift (WSLS) agent only has access to the current
sensory observation in determining the next hypothesis. Bot-
tom left: histogram of the average number of correct choices
participants made in the last 6 trials of each game. Games
in which they made the correct choice in 6 of the last 6 trials
can be considered ”learned”. Bottom right: average number
of correct choices in the last 6 trials of a game by the particle
filter model, as a function of memory capacity.

forms this inference, enabling efficient switching to hypothe-
ses that are most consistent with recent evidence. Future
work will address whether this model also explains trial-by-
trial choices.
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