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Abstract: 

Representational similarity analysis (RSA) is 
increasingly part of the standard analytic toolkit in 
neuroimaging. Core to RSA is the measuring of neural 
dissimilarity between the response patterns for different 
conditions to construct neural representational 
dissimilarity matrices (RDMs). It has been proposed that 
noise normalizing these patterns, and using cross-
validated distances as a dissimilarity measure, is 
superior for characterizing the structure of neural RDMs. 
This assessment has been motivated by improvement in 
within-subject neural dissimilarity after noise 
normalization. However, between-subject reliability is 
more directly related to determining the amount of 
explainable variance, and the evaluation of observed 
effect sizes when they are correlated with behavioral or 
model RDMs.  Across three datasets we did not find that 
noise normalization consistently boosts within-subject 
reliability, between-subject reliability or correlations with 
behavioral or model RDMs. Overall, our results provide 
equivocal support for the utility of noise normalization to 
RSA.  
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Introduction 

Representational similarity analysis (RSA) is 
increasingly part of the standard analytic toolkit utilized 
in neuroimaging. Central to RSA is the measuring of 
neural dissimilarity between the neural response 
patterns for different conditions to construct neural 
representational dissimilarity matrices (RDMs). 
Previously, it has been proposed that noise normalizing 
these patterns, and using cross-validated distances as 
a dissimilarity measure, is superior for characterizing 
the structure of neural RDMs (Walther et al., 2016). This 
assessment has been motivated by resulting 
suggesting improvement in within-subject neural 
dissimilarity after noise normalization. 

However, when it comes to carrying out RSA, 
between-subject reliability is also related to determining 
the amount of explainable variance, and the evaluation 
of observed effect sizes when they are correlated with 
behavioral or model RDMs.  Therefore, we sought to 
further investigate this issue by revisiting the impact of 
noise normalization on the reliability of measures of 
neural dissimilarity. Across three datasets, we did not 
find that noise normalization consistently boosted 
within-subject reliability, between-subject reliability or 
correlations with behavioral or model RDMs. Overall, 
our results provide equivocal support for the utility of 
noise normalization to RSA.  

Methods 

Datasets 

Datasets from three previously published studies were 
reanalyzed. Preprocessing (e.g. motion correction) and 
first-level analysis of the data followed standard 
pipelines (e.g. SPM). Further methodological details 
can be found in those works. Notably, unlike in the 
original studies, in the present reanalysis data was not 
smoothed.   

First, for Dataset 1 (D1), neural responses (N = 10) 
from primarily visual cortex (V1) were collected for 16 
square-wave gratings varying in 4 levels of orientation 
and spatial frequency (Ritchie & Op de Beeck, 2019). 
Second, for Dataset 2 (D2), neural responses (N = 15) 
from object-selective lateral occipitotemporal cortex 
(object-LOTC) were collected for 54 natural images 
from 6 categories and 9 shape types (Bracci & Op de 
Beeck, 2016). Finally, for Dataset 3 (D3), neural 
responses (N = 21) from functionally responsive 
temporal parietal junction (TPJ) were collected for 75 
videos of actors engaging in either social (39) or non-
social (36) interactions with confederates or objects, 
respectively (Lee Masson et al. 2018). 
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Dissimilarity Measures 

Four measures were used to calculate pairwise 
dissimilarity (Walther et al., 2016). First, the 
Correlation Distance (COR) dissimilarity was 
estimated based on 1 – r, where r is the pairwise 
Pearson’s correlation between response patterns 
averaged across runs. Second, the Classification 
Accuracy (CLA) Dissimilarity was estimated based on 
the pairwise accuracy of a linear discriminant analysis 
(LDA) classifier using leave-one-run-out cross-
validation. Third, the Euclidean Distance (EUC) 
Dissimilarity was estimated based on the (leave-one-
run-out) cross-validated Euclidean distance: the 
pairwise distance between responses in the training 
data was multiplied by the transposed distances from 
the test data. Finally, the Malahanobis Distance (MAL) 
Dissimilarity was estimated based on the (leave-one-
run-out) cross-validated Malahanobis distance: 
pairwise distances between training data responses 
were multiplied by the training data covariance, and 
transposed distances of the test data. 

Noise Normalization 

Following Walther et al., the data of individual subjects 
was normalized using the run-wise covariance between 
voxels as estimated by the GLM residuals from the first 
level analysis. To render the covariance matrices 
invertible, they were regularized using a shrinkage 
function. 

Estimating Reliability and Effect Sizes 

To estimate the within-subject reliability, for each 
subject data was split into odd and even runs, single 
RDMs (for each dissimilarity measure) were 
constructed for each split and correlated together 
(Pearson’s r). For between-subject reliability, for each 
subject a single RDM (for each dissimilarity measure) 
was constructed, the RDM of one subject was 
correlated with the average of the remaining subjects, 
and then values were averaged across all leave-one-
subject-out folds. 

Neural RDMs of individual subjects were correlated 
with one of three behavioral or model RDMs: for 
Dataset 1, pairwise similarity judgments based on 
stimulus orientation and spatial frequency; For Dataset 
2, multiple-arrangement similarity based on object 
shape similarity; and For Dataset 3, a binary model 
matrix differentiating social vs. non-social videos. 

In order to assess the impact of noise normalization 
on the within- and between-subject reliability of RDMs, 
and correlation effects, a linear mixed effects model 

was fit to the data with normalization and measure as 
fixed effects, and subject as a random grouping effect.  

Results 

Within-Subject Reliability 

 

Figure 1: Mean within-subject reliability. Opaque colors 
indicate noise normalization, while faded colors 

indicate results without noise normalization 

Normalization had a significant effect on the reliability 
for D1 (F(1,72) = 19.36, p = 3.67e-5). There was also a 
significant effect of measure (F(3,72) = 11.63, p = 
2.66e-6), and a significant interaction between the two 
(F(3,72) = 10.72, p = 6.56e-6). When visualized (Figure 
1), one can see that across measures noise 
normalization improve within-subject reliability, but the 
size of this improvement varies with measure, which 
also vary in baseline reliability. 

In contrast to D1, there was no effect of noise 
normalization for D2 (F(1,104) = .15, p = .7), but there 
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was a significant effect of measure (F(3,104) = 17.23, p 
= 3.48e-9), and interaction (F(3,104) = 16.36, p = 8.77e-
9). For D2, it appears that normalization improves 
reliability for only some measures (Figure 2). 

For D3, there was a consistent effect of noise 
normalization (F(1,160) = 11.39, p = 9.25e-4), but it was 
in the wrong direction (Figure 2). Although within-
subject reliability was low for D3, it was made lower by 
normalizing. There were no significant effects of 
measure (F(3,160) = 1.42, p = .24), or interaction 
(F(3,160) = .8, p = .5).  

Between-Subject Reliability 

 
 

Figure 2: Mean between-subject reliability. Colors as in 
Figure 1.   

 
When assessing between subject reliability, there was 
no effect of normalization (F(1,72) = .18, p = .67), or 
measure (F(3,72) = 2.6, p  = .06), for D1. There was 
however a significant interaction between the two 
(F(,3,72) = 4.35, p = .007). Visual inspection suggests 
these results be influenced by some extreme outliers, 

whose data negatively correlated with that of the 
remaining subjects (Figure 2).  
 

For D2, there was also no overall effect of 
normalization (F(1,104) = 1.02, p = .31), but there was 
an effect of measure (F(3,104) = 20.61, p = 1.48e-10), 
and an interaction between the two factors (F(3,104) = 
9.28, p = 1.71e-5). Similar to D1, apparent differences 
in the mean between-subject reliability may be driven 
by extreme outliers (Figure 2). 

 
For D3, there was an effect of normalization (F(1,160) 

= 6.73, p = .01), however this was again in the wrong 
direction. There were no effects of measure (F(1,160) = 
2.52, p = .06), or significant interaction (F(3,160) = 2.58, 
p = .056). As with D1 and D2, apparent shifts in the 
group mean may be influenced by outliers. 

Correlation Effects 

 
Figure 3: Mean RDM correlation. Colors as in Figure 1.   
 
For D1, there were effects of normalization (F(1,72) = 
23.29, p = 7.57e-6) and measure (F(3,72) = 9.67e-16) 
on the correlations of individual subject data with the 
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behavioral RDM, as well as a significant interaction 
(F(3, 72) = 34.72, p = 5.45e-14). These results suggest 
that overall noise normalization increased the 
behavioral RDM correlations for D1 (Figure 3). 
 

As with D1, we found effects of normalization 
(F(1,104) = 49.13, p = 2.48e-10), and measure 
(F(3,104) = 21.89, p = 4.53e-11), as well as a significant 
interaction (F(3,104) = 21.8, p = 4.98e-11). These 
results suggest that normalization also increased the 
behavioral RDM correlations for D2 (Figure 3).   

 
Finally, for D3 we saw the same pattern once more, 

with effects of normalization (F(1,160) = 72.13, p = 
1.31e-14), and measure (F(3,160) = 5.24, p = .002), and 
a significant interaction (F(3,160) = 7.34, p = 1.22e-4). 
However, noise normalization actually decreased the 
correlations with the binary model RDM (Figure 3). 

 

Discussion 

Noise normalization has been billed as a useful method 
for improving the reliability of neural RDMs (Walther et 
al., 2016). We revisited this issues to assess the extent 
to which noise normalization provides a net benefit to 
within-subject reliability of neural RDMs, while also 
assessing its impact on between-subject reliability, and 
correlations with behavioral or model RDMs. 
 

Our findings were mixed. For only 1/3 datasets did we 
see a clear positive impact of noise normalization on 
within-subject reliability, while for 1/3 datasets reliability 
decreased after normalization. Across all three 
datasets, there was either no effect, or no positive 
effect, of noise normalization on between-subject 
reliability, which is typically used as the estimate of the 
noise ceiling for RSA. Finally, for 2/3 datasets noise 
normalization did seem to somewhat improve the 
correlations of neural RDMs with behavioral ones, while 
again for one dataset it made the correlations worse. 

 
Taken as a whole, our findings provide equivocal 

support for making noise normalization core to the RSA 
pipeline. It is notable that for D3, noise normalization 
consistently made both within-subject reliability and 
model RDM correlations worse. While these findings 
could be related to the fact that there were far fewer 
runs than for D1 and D2 (6 compared to 12 and 16), 
they may also be related to the fact that the ROI was 
TPJ, which lacks the sort of topographic organization 
known to exist in the ROIs for the other datasets (object-
LOTC, and especially V1). Therefore, one possibility is 
that methods like noise normalization may only provide 
a benefit when regions are known to have some clear 
topographic organization.    
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