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Abstract:

Gaze biases choice during value-based decision-making. 
The attention drift diffusion model describes this bias as 
a multiplicative interaction whereby gaze amplifies the 
value of the attended relative to the unattended option. 
Another account proposes that the direction of gaze 
effects on choice might be reversed, such that a latent 
decision to choose an option causes participants to 
dwell on that option, resulting in additive rather than 
interactive effects of value and gaze. Here, we tracked 
dynamic gaze patterns while participants chose between 
two options, the costs and benefits of which are spatially 
separated on the screen. Influences of gaze on choice 
evolved over time: Early gaze at benefits versus costs 
biases choices toward high-cost / high-benefit options, 
consistent with the attention drift diffusion model. 
Conversely, later gaze increasingly reflects the 
upcoming choice, so that gaze at both high benefits and 
high costs accompany choice of high-cost / high-benefit 
options. Formally, early gaze predicts drift rates via a 
multiplicative interaction with value, while late gaze is 
additive with value, consistent with a reversal of the 
direction of influence. Our results help reconcile 
competing models by applying drift diffusion modeling 
to the domain of multi-attribute decisions. 

Keywords: gaze; value; decision-making; drift diffusion; 
dopamine; motivation 

Introduction 

Decision-makers tend to choose options to which they 
devote more of their gaze. This may reflect a causal role 
of visual attention in amplifying the value difference 

between attended and unattended options. The 
attention drift diffusion model (aDDM; Krajbich, Armel, 
& Rangel, 2010) formalizes the potentially causal 
interaction between gaze and value. According to the 
aDDM, instantaneous evidence for item	𝐴 is given by 
the value difference between items (𝑟$ versus 𝑟%), 
where the unattended item value is discounted. Thus, 
the effective drift rate on that trial 𝑣 is the product of the 
difference in values and the difference in gaze at 𝐴 
versus 𝐵 (g$ versus g%). 

𝑣	~	𝛽+ + 𝛽- g$𝑟$ − g%𝑟% + 𝛽/ g%𝑟$ − g$𝑟% + 𝜀				Eqn. 1	

An alternative account posits that putative influences 
of gaze on choice might instead reflect a window into 
the decision-maker’s latent choice prior to responding 
(Cavanagh, Wiecki, Kochar, & Frank, 2014). Perhaps, 
for example, participants identify their preference and 
then fixate that preference before responding. Just like 
the aDDM, such an account would predict both that 
gaze predicts choice and that effective drift rates would 
be higher for larger differences in value and proportion 
gaze. However, under this account, drift rates are 
predicted by an additive rather than a multiplicative 
combination of gaze and value (Cavanagh et al., 2014).  

𝑣	~	𝛽+ + 𝛽- 𝑟$ − 𝑟% + 𝛽/ g$ − g% + 𝜀	                Eqn. 2 

Qualitative mimicry between the two models makes 
adjudicating between them a challenge – particularly if 
decisions involve purely appetitive offers: under both 

505

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



accounts, the more one looks at an option the more 
likely they are to choose it. By contrast, the models 
make starkly different predictions about the effects of 
gaze on choice if there are both appetitive and aversive 
choice dimensions. Consider a choice between high-
cost / high-benefit, and a low-cost / low-benefit options. 
Here, a multiplicative model predicts that the more a 
decision-maker attends to the cost of the high-cost 
option, the less likely they should be to choose it. An 
additive model, however, predicts that regardless of 
cost differences, more gaze at the cost of the high-cost 
option should still increase the likelihood of choosing it. 

Here, we test diverging predictions about gaze effects 
on choice in a cost-benefit decision task. By separating 
attributes, we can test how gaze influences choice 
when participants gaze at appetitive benefit, or aversive 
cost information. This approach also allows us to test 
whether evidence accumulation is best explained by 
value differences between options (the standard 
approach in aDDM), or attributes, as articulated in 
attribute-wise decision models (e.g. (Roe, Busemeyer, 
& Townsend, 2001)). Finally, our study was part of a 
larger study of the influence of striatal dopamine on 
decision-making. Thus we further tested the specific 
predictions that striatal dopamine increases sensitivity 
to benefits versus costs (Collins & Frank, 2014), thus 
increasing high-cost, high-benefit selection rates. 

Methods 

Fifty healthy young adults were recruited for a larger, 
multi-session pharmaco-imaging study of the effects of 
dopamine on decision-making about cognitive effort. In 
each drug session, participants decided between offers 
to complete a harder (high-cost) N-back task for more 
money, or an easier (low-cost) N-back task for less 
money, while we monitored gaze. Previously, we have 
shown that the N-back task is subjectively effortful, and 
that subjective costs increase parametrically with N-
back load (Westbrook, Kester, & Braver, 2013).  

In our paradigm, participants experience multiple N-
back load levels. Next, following drug administration, a 
discounting procedure is used to estimate the 
subjective value (SV) of offers to repeat each N-back 
level for money. Finally, participants decide between 
pairs of offers to repeat higher levels for more money or 
lower load levels for less while we monitored their gaze. 
Offers are tailored to participants’ SVs such that the 
high effort option is preferred on half of trials and to 
ensure a balanced mix of trials in which offer pairs are 
close and far apart in terms of their SV. To study 
dopamine, we measured individual differences in 

striatal dopamine synthesis capacity using 18FDOPA 
PET. Moreover, all decisions were made either under 
the influence of the catecholamine transporter blocker, 
methylphenidate, the selective dopamine receptor 
antagonist sulpiride, or placebo. 

 

Figure 1: Gaze data from a trial with costs (N-back 
load) and benefits (€) separated in space. Yellow dots 

indicate gaze at two attributes across two options. 

Results 

As anticipated, higher load was more subjectively 
costly. In a multi-level regression, offers were 
discounted proportionally more: subjective values (SVs) 
decreased as N-back load increased (bplacebo = -0.15; p 
= 1.4×10-14), controlling for offer amount. This result 
confirmed that load was subjectively costly and thus an 
aversive attribute. Also, SVs were stable across a 
session, reliably predicting subsequent choices 
between high- and low-effort offers, while we monitored 
gaze. In a multi-level logistic regression, high- versus 
low-effort offer SV robustly predicted more high-effort 
choice (bplacebo = 1.67, p < 2.2 ×10-16). 

Gaze Patterns 

Gaze at Options Predicts Choice Consistent with prior 
studies, participants gazed more at the options they 
chose. Across participants, the average proportion of 
gaze at the high-effort option was reliably higher on 
trials in which the high-effort option was chosen (51.3% 
versus 44.0%; p < 2.2×10-16). Moreover, we found that 
selection of the high-effort option increased as a 
function of gaze at both the benefits and the costs of 
that option. In a multi-level logistic regression, 
controlling for SV differences, the probability of a high-
effort choice increased, on placebo, when participants 
spent more time looking at the benefits (b = 0.87; p < 
2.2×10-16), and also when they spent more time looking 
at the costs (b = 0.58; p < 2.2×10-16) of the high-effort 
option. Notably, while the signs of both terms are 
positive, the effect of increasing gaze at costs is smaller 
than gaze at benefits (p = 5.0×10-4) suggesting both 
additivity and multiplicativity with attribute values. 
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Early Gaze at Attributes Predicts Choice Participants 
were more likely to fixate on benefits rather than costs 
early in a trial. Interestingly, this effect was larger on 
trials in which the high effort option was selected (Fig. 
3). This effect suggests that greater attention to benefits 
versus costs increased motivation for high-cost, high-
benefit offers, and thus that gaze is multiplicative with 
value in biasing choice. Moreover, this suggests that 
gaze interacts with attribute rather option values. 

 

Figure 3: Gaze data time-locked to offer. 
Participants gazed more at benefit than cost 

information early in trials, and even more so on trials in 
which they chose the high-effort option. 

Late Gaze at Options Predicts Choice Just before a 
response, gaze was increasingly committed to either 
attribute (cost or benefit) of the option the participant 
was about to select (Fig. 4).  

 

Figure 4: Gaze data time-locked to response. 
Participants increasingly fixated either attribute of the 

to-be selected option prior to choice. 

Commitment began well before a response. Indeed, 
when locked to responses, we found a clear bifurcation 
in looking patterns – identified as the time of peak 
proportion gaze at the unchosen option – occurring 
~800 ms prior to choice. This dynamic implies a 

protracted post-choice (yet pre-response) commitment 
of gaze to the chosen option and suggests that, post-
choice (but pre-response), gaze is additive to value. 

Drift Diffusion Modeling 

Qualitative gaze patterns imply both multiplicative and 
additive contributions of gaze and value during 
evidence accumulation. Moreover, the early effect of 
gaze at benefits-versus-costs implies an interaction 
with attributes rather than options. To test these 
possibilities, we estimated the effect of gaze and value 
differences on effective drift rates using hierarchical, 
Bayesian estimation of drift diffusion models (HDDM; 
Wiecki, Sofer, & Frank, 2013). Namely, in different 
models, we estimated whether drift rate varied with 1) 
value differences between options or attributes, 2) gaze 
differences at options or at attributes, and 3) additive or 
multiplicative combinations of gaze and value terms. 
We used Deviance Information Criteria (DIC) for 
primary model selection, and posterior predictive 
checks to ensure good model fit.  

We found that the best fitting model featured both 
multiplicative interactions of gaze with the value of 
attributes rather than options as well as additive 
contributions of gaze. Namely, trial-wise drift rate was 
best predicted by a multiplicative interaction between 
proportion gaze at benefits g234, versus costs g5678, and 
differences in benefits BenD and costs CostD, as well as 
additive contributions of the difference in gaze at the 
benefits of option 𝐴 versus 𝐵, given by g234$ − g234% 
and differences in gaze at the costs g5678$ − g5678%. 

𝜈	~	𝛽++𝛽- g234×BenD + 𝛽/ g5678×BenD + ⋯ 		
𝛽C g5678×CostD + 𝛽D g234×CostD + ⋯ 
𝛽E g234$ − g234% + 𝛽F g5678$ − g5678%               Eqn. 3 

Considering our qualitative gaze patterns, we further 
suspected that additive and multiplicative contributions 
would vary dynamically across the trial. We thus broke 
up trials into gaze occurring before or after bifurcation 
defined for each participant in each session separately, 
as described above. Next, we fit the winning model 
(Eqn. 3) using either pre- or post-bifurcation gaze. The 
result confirmed our suspicion: Multiplicative terms are 
reliably positive pre-bifurcation, and near zero post-
bifurcation, whereas additive terms are near zero pre-
bifurcation and positive post-bifurcation (Fig. 5). This 
double-dissociation supports the hypothesis that visual 
attention shapes value formation early in a trial, while 
gaze comes to reflect the preferred option late in a trial. 
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Figure 5: Multiplicative and additive terms are near 
zero or positive, depending on when gaze occurs. 

Multiplicative terms are 𝛽- − 𝛽/ for benefits and 𝛽C − 𝛽D 
for costs. Note that, Eqn. 3 reduces to the additive 

model in case 𝛽- = 𝛽/ or 𝛽C = 𝛽D.  

Dopamine Enhances Sensitivity to Benefits 
Finally, we found that higher striatal dopamine predicts 
increased high effort selection, and amplified gaze-
value interactions. In a multi-level logistic regression, 
caudate dopamine synthesis capacity predicted more 
high effort selection (b = 0.96; p = 0.012) and correlated 
with larger, more positive interactions between gaze at 
benefits across a trial and benefit value differences (𝛽- 
in Eqn. 3; 𝑟H3IJ764 = 0.33; p = 0.029; Fig. 6). 
Methylphenidate also increased high effort selection 
versus placebo (b = 1.66; p = 0.0053), and amplified the 
gaze-benefits interaction (𝑡LIMJ3N= 2.18; p = 0.034). 
These results highlight the value of trial-level 
hierarchical drift diffusion modeling by providing 
evidence for an active role of visual attention in 
evidence accumulation and moreover implicating 
caudate dopamine in enhancing the accumulation of 
benefit information during choice. 

 

Figure 6: Multiplicative gaze-benefit interaction term 
is larger for individuals with higher dopamine synthesis 

capacity, and on methylphenidate (MPH) but not 
sulpiride (SUL) versus placebo (PBO). 

Summary 

Our results show that visual attention, as indexed by 
gaze, predicts subsequent choice in a dynamic fashion. 
Namely, early gaze may play more of a causal role in 
shaping the perception of value while late gaze may 
reflect post-choice commitment. We also show that 
striatal dopamine may enhance motivation by 
increasing sensitivity to benefits during evidence 
accumulation, biasing high-cost, high-benefit choices. 
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