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Abstract: 

Recent advances in cognitive modelling merged two classes of 

cognitive models: Sequential sampling models of decision-

making, and reinforcement learning models of error-driven 

learning. Such integrated models provide theoretical accounts 

of the cognitive processes underlying decisions and learning 

simultaneously. Here, we test whether a classical decision-

making phenomenon -the speed-accuracy trade-off- can be 

observed in an instrumental learning task, and whether an 

integrated reinforcement learning/sequential sampling model is 

able to capture this effect. The results show that the model 

indeed captured the speed-accuracy trade-off effect in 

empirical data, as well as changes in response times and 

accuracies due to learning over the course of the experiment. 

This study further illustrates the great promise of the 

integration of the reinforcement learning and sequential 

sampling frameworks for cognitive psychology and cognitive 

neuroscience. 
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Introduction 

Recent advances in cognitive modelling (Fontanesi, Gluth, 

Spektor, & Rieskamp, 2019; Pedersen, Frank, & Biele, 2017; 

Sewell, Jach, Boag, & Van Heer, 2019) shows an increasing 

interest in the merger of two prominent classes of cognitive 

models: Sequential sampling models (SSMs) of decision-

making (Forstmann, Ratcliff, & Wagenmakers, 2016), and 

reinforcement learning (RL) models of model-free, error-

driven learning (Sutton & Barto, 2018). Such a merger holds 

the promise of the best of both worlds: The SSM provides a 

mechanistic theory of the cognitive processes underlying 

decisions, while the RL model accounts for learning from 

errors over time. Merged RL-SSM models have now been 

shown to be able to explain response time distributions of 

decisions as well as increases in speed and accuracy over the 

course of an experiment due to learning (Fontanesi et al., 

2019; Pedersen et al., 2017; Sewell et al., 2019). 

The use of an SSM in learning tasks as the choice function 

implies that the cognitive processes underlying decisions in 

learning tasks are identical (or very similar) to the processes 

more often studied in perceptual decision-making. If this is 

the case, it can be expected that well-studied decision-making 

phenomena are also present in learning tasks. In support of 

this hypothesis, Pederson et al. (2017), Sewell et al. (2019), 

and Fontanesi et al. (2019) found typical choice difficulty 

effects, and Fontanesi et al. (2019) furthermore found 

magnitude effects in a learning task. Here, we extend these 

findings by testing for the presence of a speed-accuracy trade-

off in the decision-making process during a learning task. 

The speed-accuracy trade-off (SAT) refers to the long-

studied phenomenon that people are able to voluntarily trade 

off decision speed for decision accuracy (Heitz, 2014). In the 

field of perceptual decision-making, this ability is often 

targeted in experimental manipulations to study decision-

making behavior under speed stress, as well as the neural 

underpinnings of responses (Bogacz, Wagenmakers, 

Forstmann, & Nieuwenhuis, 2010). SSMs provide an 

intuitive mechanistic account of the SAT. These models 

assume that people make decisions by gradually 

accumulating noisy evidence until a threshold level of 

evidence is reached, at which point people commit to a 

decision and initiate a motor response. SAT settings are 

captured by the threshold parameter: Increases in threshold 

lead to slower but more accurate decisions, and vice versa. 

Accordingly, we hypothesized that the threshold parameter 

is affected by SAT instructions in a learning task as well. 
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Furthermore, we explore whether the learning rate parameter 

is also affected. In what follows, we test for the presence of a 

SAT in decision-making in a typical learning task. 

Methods 

Data collection 

Participants 35 healthy participants (age 20.5y [SD 2.5y], 8 

male) were recruited from the subject pool of the department 

of Psychology, University of Amsterdam. The study was 

approved by the local ethical committee. All participants 

gave written informed consent and received course credits for 

participating. Participants could earn extra course credit by 

earning many points in the task.  

 

Task The task used was an instrumental learning task (c.f. 

Sewell et al., 2019; Figure 1), in which participants need to 

learn by trial and error, which of two visually presented 

choice options are mostly likely to lead to a reward. Within a 

block of this task, three stimulus pairs were presented. Each 

pair had fixed reward probabilities associated with each 

stimulus. Trials start with the presentation of two abstract 

symbols (characters in the Agathodaemon alphabet), between 

which the participant has to choose. The choice is 

highlighted, after which the participant receives feedback 

about the outcome of the choice (0 or 100 points), and the 

actual reward. The actual reward was equal to the outcome of 

the choice if the participant chose in time, or a penalty of -

100 (irrespective of the choice outcome) if the participant was 

too late. 

  

 

Figure 1: Illustration of the task. The feedback shown here 

is one of three possible feedback screens. In this case, the 

participant chose a symbol that led to +100 points outcome, 

but was too slow, and therefore lost 100 points. The other 

feedback screens were for choices in time, where the reward 

was equal to the choice outcome. 

 

Design The experiment consisted of three blocks. The first 

block was a calibration block, in which the participant had to 

learn four stimuli sets (with reward probabilities of 80%-

20%; 70%-30%; 65%-35%; and 60%-40%). The data of this 

block were used to determine the difficulty of the upcoming 

blocks (an accuracy-weighted sum of the reward probabilities 

of each stimulus set in the calibration block), as well as to set 

an individual response deadline in trials in which participants 

were instructed to respond fast (the 65th quantile of the RT 

distributions in the calibration block, plus a random intercept 

sampled from an exponential distribution to reduce deadline 

predictability).  

Subsequently, participants performed two more blocks, in 

which each trial was preceded by a speed or accuracy cue. In 

speed trials, participants were required to respond before the 

deadline, and too late responses were never rewarded. Each 

block consisted of 304 trials (152 trials per cue, 76 trials per 

stimuli pair, 4 stimuli pairs). In one of the two blocks, speed 

and accuracy trials were randomly intermixed. In the other 

block, the cues were presented in miniblocks of 8 trials. Cue 

order was randomized across participants. Here, we only 

analyze the data of the miniblocks, since we found the 

behavioral effect of the cues to be largest in this block.  

Cognitive modelling 

The data were modelled using a combination of Q-learning 

(Sutton & Barto, 2018) and the diffusion decision model 

(DDM; Ratcliff, 1978). Like SSMs, we assume that 

participants make decisions by gradually accumulating 

evidence over time (with a mean accumulation rate called the 

drift rate) until a threshold level of evidence is reached, and 

a decision is made. However, whereas the drift rate is 

estimated as a free variable in standard SSMs, we assume that 

the drift rate is a linear function of the difference in Q-values. 

Q-values can be interpreted as the reward expectations for 

each state-action pair (s, a), and are updated after every trial 

t according to: 

 

𝑄(𝑠,𝑎)𝑡+1 = 𝑄(𝑠,𝑎)𝑡 +𝛼(𝑟𝑡 −max
𝑎

𝑄(𝑠,𝑎)𝑡) 
 

where 0 < 𝛼 ≤ 1 is the learning rate, and r reward. In all the 

models we fit, the DDM had four parameters: a drift rate v, 

threshold b, and two parameters describing a uniform non-

decision time distribution t0 and st0. Non-decision time 

variability was included because it improved the quality of 

fit. We assumed that drift rate 𝑣 on every trial was a function 

of the difference in Q-values for both choice options, linearly 

scaled by a factor 𝑚: 

 

𝑣𝑡 = 𝑚(𝑄(𝑠,𝑎1)𝑡
− 𝑄(𝑠,𝑎2)𝑡) 

 

We fit four different model specifications (Table 2), allowing 

the learning rate, the threshold, or both parameters to vary 

with the speed-accuracy trade-off instruction. Models were 

fit using maximum likelihood estimation. For formal model 

comparison, we computed the Bayesian information criterion 

(BIC; Wagenmakers & Farrell, 2004). The BIC is defined as 

𝐵𝐼𝐶 = −2 log(𝐿) + 𝑘log⁡(𝑛), where 𝑘 is the number of 
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estimated parameters, and n the number of observations 

(trials). Lower values indicate better trade-offs between 

quality of fit and model complexity. 

Results 

Descriptives In the speed condition, choices were faster 

(speed M = 0.467s [SD = 0.08s], accuracy M = 0.556s  

[SD = 0.08s], t(34) = -6.024, p < 0.001) and less accurate 

(speed M = 0.697 [SD = 0.138], accuracy M = 0.724 

[SD = 0.135], t(34) = -3.703, p < 0.001) than in the accuracy 

condition, in line with a typical SAT effect. 

 

Model comparison Table 1 provides an overview of the 

model comparison. The overall winner was Model 2, with the 

lowest summed BIC and highest number of participants for 

which it was preferred. The model with separate thresholds 

for speed and accuracy trials won for 19 participants (54% of 

all participants). For 9 participants (26%), there was no 

evidence for a change in threshold or learning rate; for 

another 5 subjects (14%), there was evidence for both a 

change in threshold and learning rate, and the final 2 

participants (5%) showed evidence for a change in learning 

rate only. 

 

Table 1: Model comparison. M = model number, 

k = number of free parameters, ∑𝐵𝐼𝐶 = summed BIC (lower 

is better), n = number of participants for which the model 

won. 

 

M Free parameters k ∑𝐵𝐼𝐶 n 

1 𝑏, 𝛼, t0, st0, 𝑚 5 -1350.83 9  

2 𝑏𝑠𝑝𝑑,⁡𝑏𝑎𝑐𝑐 , 𝛼, t0, st0, 𝑚 6 -2265.55 19  

3 𝑏, 𝛼𝑠𝑝𝑑, 𝛼𝑎𝑐𝑐 , t0, st0, 𝑚 6 -1222.59 2  

4 𝑏𝑠𝑝𝑑,⁡𝑏𝑎𝑐𝑐 , 𝛼𝑠𝑝𝑑, 𝛼𝑎𝑐𝑐, t0, st0, 𝑚 7 -2129.82 5 

Model fits Figure 2A illustrates the overall quality of fit for 

both conditions for Model 2. The upper panels show the 

defective cumulative density functions of both the data and 

the model predictions (mean across participants and model 

predictions). The mean RTs and accuracies are captured well 

by the model, although the model predicts a slightly more 

skewed distribution (as indicated by an overestimated 

defective probability in the left tail, and an underestimation 

in the right tail). We briefly return to this in the Discussion. 

The lower panels show the changes in response time and 

accuracy over the course of the experiment due to learning. 

The model captures the trends in both dependent variables 

well. 

 

Manipulation effect size and model preference It is 

interesting to explore why no effect was found for a quarter 

of the participants. One potential reason is that the behavioral 

effect was too small (e.g. compared to the effects reported in 

Forstmann et al., 2008) to be detected using the BIC metric 

for model comparisons, which is known to be relatively 

conservative (Wagenmakers & Farrell, 2004). To test this 

hypothesis, we calculated for each participant the difference 

(between speed and accuracy cues) in mean RT and accuracy. 

Figure 2B illustrates the winning model for each combination 

of difference in RT and accuracy between SAT conditions. 

For all participants with an RT difference of roughly 50ms or 

larger, the winning model always included a threshold 

change. For all participants with a smaller RT difference, the 

winning model never included a threshold change. This 

suggests that for the subset of 9 participants for which the null 

model won, the effect size of the experimental manipulation 

was not sufficiently large to warrant an extra parameter in the 

model. 

Figure 2. A) Quality of fit, averaged over participants, for both the speed (left panels) and accuracy (right panels) conditions. 

Upper panels are defective cumulative density functions of data (dotted lines, circles) and model prediction (solid lines, 

crosses). Colors indicate the choice option (red is the optimal, “correct” choice). Lower panels show the changes over the 

course of the experiment in mean RT and accuracy. Trials were binned into groups of 30 (10 bins total). Error bars are the 

standard error. B) Relationship between cue-induced changes in mean RT, in accuracy, and the winning models. 
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Discussion 

Here, we tested whether the speed-accuracy trade-off, a 

hallmark-phenomenon in perceptual decision-making, can be 

observed in an instrumental learning task. In line with 

expectations, instructing participants to respond quickly led 

to faster but less accurate decisions than instructing them to 

be accurate. An RL-DDM was able to capture the response 

time distributions, response accuracy, as well changes in 

response time and accuracy over time due to learning. Model 

comparisons revealed that the behavioral changes due to 

speed and accuracy instructions were caused by changes in 

threshold settings, with little evidence for changes in learning 

rates. 

Several interesting aspects should be noted. Firstly, the 

effects of the SAT manipulations on response times and 

accuracies were small compared to those commonly 

observed in perceptual decision-making tasks (e.g., 

Forstmann et al., 2008). One potential reason may be that the 

incentive to be accurate was always stronger than to be fast, 

because accuracy was explicitly rewarded with course credit 

at the end of the experiment. In future studies, it may be 

possible to increase the effect size by providing an extra 

incentive to be fast after speed cues, for example by 

rewarding response speed. 

Secondly, there is some misfit in the response time 

distributions, mostly with respect to the skewness: the RL-

DDM consistently predicted more right-skewed distributions 

(skewness >1.5) than observed in the data (median 

skewness = 1.0 [IQR 0.64]). The inclusion of the non-

decision time variability reduced the misfit to some extent. 

Including non-decision time variability in the model may be 

especially important to include in this task due to the high 

response speeds (compared to perceptual decision-making 

tasks). As such, non-decision time variability has a relatively 

large influence on the response time distributions. However, 

even with the inclusion of non-decision time variability, the 

models still predict higher skewness. Future research should 

focus on testing which cognitive processes (e.g., urgency; 

Hawkins, Forstmann, Wagenmakers, Ratcliff, & Brown, 

2015) can explain this feature in the data. 

Thirdly, and advocating the integration of models from 

the RL and SSM frameworks, our conclusions with respect to 

the effect of the SAT manipulation could not have been 

drawn based on classical RL modelling using softmax as a 

choice function. Fitting RL models with softmax to the same 

data led to the overall conclusion that neither the learning rate 

nor softmax’ inverse temperature parameter was affected by 

the SAT manipulation, even though there was clearly a 

behavioral effect in both accuracy and RT. The combined 

model was able to capture both the SAT effect as well as the 

learning effect in our data. This illustrates the theoretical 

advantage of combining insights from the RL and SSM 

frameworks, as well as the great promise of this integration 

for cognitive psychology and cognitive neuroscience. 
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