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Abstract
Many animals make eye movements to gather relevant
visual information about the environment. How fixation
locations are selected has been debated for decades in
neuroscience and psychology. One hypothesis states
that “priority” or “saliency” values are assigned locally
to image locations, independent of saccade history, and
are only later combined with saccade history and other
constraints to select the next fixation location. A second
hypothesis is that there are interactions between saccade
history and image content that cannot be summarised by
a single value. Here we discriminate between these pos-
sibilities in a data-driven manner.

Using transfer learning from the VGG deep neural net-
work, we train a model of scanpath prediction “DeepGaze
III” on human free-viewing eye scanpath data. DeepGaze
III can either be forced to use a single saliency map or
can be allowed to learn complex interactions via multiple
saliency maps. We find that using multiple saliency maps
gives no advantage in scanpath prediction compared to
a single saliency map. This suggesest that – at least
for free-viewing – no complex interactions between scene
content and scanpath history exist and a single saliency
map may exist that does not depend on either current or
previous gaze locations.

Keywords: saliency; fixations; scanpath; deep learning; trans-
fer learning

Introduction
How humans explore their visual environment has attracted
research for many decades. A long-standing theory in the
field of gaze prediction poses the existence of an image-
dependent saliency map which is combined with task informa-
tion and scanpath history to decide on the target of the next
saccade. Different locations have been proposed for where
such a map might be implemented in the brain, including V1
Zhang, Zhaoping, Zhou, and Fang (2012) and Superior Col-
liculus. Starting with the Feature Integration Theory imple-
mented in the seminal model by Itti, Koch, and Niebur (1998),
many models proposed different ideas how such a saliency
map might be computed. The last decades have seen great
growth in the number and performance of models predicting
the spatial fixation distribution, with the current state-of-the-
art being our model “DeepGaze II” (Kümmerer, Wallis, Gatys,

& Bethge, 2017) according to the influential MIT Saliency
Benchmark (saliency.mit.edu).

However, the saliency map hypthesis puts strong con-
straints on how fixations are selected. Interactions between
saccade history and image content that cannot be sum-
marised by a single value are not allowed. For example, if
after long saccades different image features drive the next fix-
ation than after short saccades, then it is impossible to assign
a single saliency value to image locations.

In order to discriminate between these possibilities, here we
move from predicting spatial fixation distributions to predicting
sequences of fixations. We do so by extending our previous
model DeepGaze II to predict fixation locations depending on
where a subject fixated before.

Results

Model

In Figure 1b we show the architecture of DeepGaze III.
DeepGaze III first encodes image content and scanpath his-
tory into spatial feature maps. The image content is encoded
via deep VGG (Simonyan & Zisserman, 2014) features. For
the previous scanpath history feature maps are used that en-
code the euclidean distance as well as the difference in x and
y coordinate to the encoded fixation. These feature maps are
then processed by a neural network using only 1 × 1 con-
volutions. This neural network is split into an purely image-
dependent saliency network that computes one or multiple
saliency maps, a purely scanpath dependent scanpath net-
work and a final fixation selection network that combines
the output of the previous networks. The fixation selection
network outputs a single feature map that is subsequently
blurred, combined with a center bias and fed through a soft-
max to yield the final conditional fixation density for the next
fixation given the previous fixations. We train DeepGaze III on
the MIT1003 dataset (scanpaths from 15 human observers,
1003 images, 3 seconds free-viewing; Judd, Ehinger, Durand,
& Torralba, 2009) using maximum-likelihood training via gra-
dient descent and tenfold crossvalidation to avoid overfitting.

Evaluation

We compare DeepGaze III to DeepGaze II and several pre-
vious scanpath models (Clarke, Stainer, Tatler, & Hunt, 2017;
Adeli, Vitu, & Zelinsky, 2017; Schütt et al., 2017). In Figure 1c
we evaluate the performance of DeepGaze III and the other
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Figure 1: a) Humans explore images in scanpaths by making multiple fixations. b) Our model computes a saliency map from
deep VGG features and then uses this saliency map together with information about the previous scanpath to predict possible
locations of the next fixation. c) DeepGaze III outperforms the scanpath-independent DeepGaze II model as well as previous
models of scanpath prediction.

a)

b)

Figure 2: a) Model predictions are strongly influenced by the
last saccade. For the same image, we show model predic-
tions with different scanpath histories. b) DeepGaze III re-
produces key properties of human scanpaths: distribution of
saccade lengths, the tendency towards horizontal and vertical
saccades and saccade angles.

models. DeepGaze III performs substantially better than the
other models.

In Figure 2a we show fixation densities as predicted by the
model for an example stimulus and different scanpath histo-
ries. It can be seen that the model prediction strongly depends
on the scanpath history: the model favors locations close to
the last fixation.

In Figure 2b we test how well DeepGaze III reproduces key
properties of human scanpaths, for example a very specific
distribution of saccade lengths and a tendency to favor hori-
zontal saccades to vertical saccades and to favor vertical sac-
cades to diagonal saccades. To this end, we sampled new
scanpaths from the model and compared said statistics be-
tween the empirical data and the sampled data in Figure 2b.
All properties are better reproduced by DeepGaze III than by
other models.

Evidence for a Spatiotopic Free-viewing Saliency
Map
All results presented above use only one single saliency map
as output of the saliency network, as stated by the saliency
map hypothesis in the abstract. In order to collect evidence in
favor of or against that hypothesis we trained additional ver-
sions of DeepGaze III where the saliency network computes
multiple saliency maps (Figure 1b, dashed feature map). Fig-
ure 3 shows that all models show very similar performance.
This rules out more complicated interactions between image
content and scanpath history such as the ones exemplified in
the introduction and provides some evidence for the existence
of a spatiotopic saliency map for free-viewing.

One might argue that our model is limited by the fact that
it is not foveated. A retinotopic saliency map could show up
in our model as multiple saliency maps, one that is used for
the fovea and others that are used for the periphery. How-
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Figure 3: Whether DeepGaze III can use one or multiple
saliency maps doesn’t affect performance: complex interac-
tions between scanpath history and image content don’t seem
to play a relevant role in fixation selection, providing some ev-
idence for the existence of “the saliency map” of an image.

ever, since we don’t find evidence against the even stronger
hypothesis of a spatiotopic saliency map, this doesn’t affect
our results.

Since we find that the saliency map has strong high-level
components (faces, text), we expect that higher brain areas
that are sensitive to these objects play an important role in
computing this saliency map. The saliency map could be
computed downstream from these areas, or these areas could
feed back to earlier areas from which the saliency map is read
out.

Discussion
The present work applies deep learning to learn a probabilistic
model of free-viewing human scanpaths. Using this model, in-
teractions between scene content and recent scanpath history
in fixation selection are probed with the result that no such in-
teractions that go beyond a simple pixelwise saliency measure
seem to exist.

The recent years have seen increasingly many applications
of deep learning in neuroscience (Yamins et al., 2014; Hong,
Yamins, Majaj, & DiCarlo, 2016; Jozwik, Kriegeskorte, Storrs,
& Mur, 2017). Deep learning models as such are black boxes
and it is hard to understand what the models are actually
learning. For this reason, their usefulness in neuroscience
is often questioned. In some cases this critique might be jus-
tified: even more for deep learning models than for classical
models it is not enough to just predict the data well. Good pre-
diction performance is merely a necessary requisite for being
able to draw scientific conclusions. We want to argue that the
present work showcases how deep learning can be applied
in a way that tests a well-defined question and gives a clear
answer: whether there are (on a functional level) interactions
between scene content and scanpath history that cannot be
described by a simple pixelwise saliency measure.

In order to answer this question by model comparison, there
are two important factors. Firstly, the model that uses a sim-
ple pixelwise saliency measure has to be powerful enough to

not be penalized simply due to the fact hat it cannot learn a
sufficiently good saliency measure. Secondly, the model that
uses more complicated interactions has to be able to learn
quite general and arbitrary interactions. If the first model is
not able to extract a good saliency measure, the second model
might perform better simply because it “missuse” parts of its
architecture intended for interaction modeling to learn a bet-
ter saliency measure although there are no interactions. If the
second model is too limited, it might just not be able to pick up
existing interactions.

The deep learning based model architecture presented
here is designed to circumvent exactly those problems. The
architecture provides good modeling power in the form of
DNNs to most parts of the models and only controls whether
the models can use interactions beyond a simple saliency
measure.

Acknowledgments
This research has been funded by the BMBF competence
center for machine learning (FKZ 01IS18039A), the German
Science Foundation (DFG; Collaborative Research Centre
1233) and the German Excellency Initiative (EXC307).

References
Adeli, H., Vitu, F., & Zelinsky, G. J. (2017). A model of the

superior colliculus predicts fixation locations during scene
viewing and visual search. The Journal of Neuroscience,
37 (6), 1453–1467.

Clarke, A. D. F., Stainer, M. J., Tatler, B. W., & Hunt, A. R.
(2017). The saccadic flow baseline: Accounting for image-
independent biases in fixation behavior. Journal of Vision,
17 (11), 12–12.

Hong, H., Yamins, D. L. K., Majaj, N. J., & DiCarlo, J. J.
(2016). Explicit information for category-orthogonal object
properties increases along the ventral stream. Nature Neu-
roscience, 19(4), 613–622.

Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-
based visual attention for rapid scene analysis. IEEE
Transactions on pattern analysis and machine intelligence,
20(11), 1254–1259.

Jozwik, K. M., Kriegeskorte, N., Storrs, K. R., & Mur, M.
(2017). Deep convolutional neural networks outperform
feature-based but not categorical models in explaining ob-
ject similarity judgments. Frontiers in Psychology , 8.

Judd, T., Ehinger, K., Durand, F., & Torralba, A. (2009). Learn-
ing to predict where humans look. In Computer vision, 2009
IEEE 12th international conference on (pp. 2106–2113).
IEEE.
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