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Abstract:

Human multisensory inference has recently been characterized 
as involving fusion, segregation, or a flexible arbitration 
between fusion and segregation by virtue of sensory causal 
inference (CI; see Rohe & Noppeney, 2015). Theoretical work 
suggests that this inference could be a monolithic process 
implemented in reciprocally-coupled neuronal assemblies 
(Zhang et al., 2019). An alternative view, however, is that the 
computations are structured in time, so that different processes 
dominate at different post-stimulus latencies. There is emerging 
neural evidence for this view (Aller & Noppeney, 2018; Cao et 
al., 2019). Furthermore, behavioral studies also suggested that 
fusion may be a rather automatic process, e.g., crossmodal 
biases tend to be stronger when participants respond faster or 
after acquiring only little sensory evidence (Noppeney et al., 
2010). By contrast, CI requires additional processing time as it 
capitalizes on evaluating the degree of sensory discrepancy, 
maintaining beliefs over latent causes, and possibly exploring 
distinct decision strategies. Here, across three studies 
combining psychophysics, computational modelling, and 
representational similarity analysis (RSA) to source-resolved 
human magnetoencephalographic data, we show that 
multisensory inference unfolds in time, by rapidly deriving a 
fused sensory estimate for computational expediency and, later 
and if required, filtering out irrelevant signals based on the 
inferred sensory cause(s). 

Keywords: multisensory inference; causal structure; 
magnetoencephalography (MEG). 

Methods 

An overview of the tasks and design factors for the 3 
studies is illustrated in Fig. 1. In Study 1, 15 human 
participants made 4-alternative forced choice speeded 
judgements in an audiovisual rate categorization task (Fig. 1). 
The stimuli consisted of a temporal sequence of audiovisual 
pulses (flutter and flicker; duration of the entire sequence was 
550 ms) presented at four possible repetition rates (9.1, 12.7, 
16.4 or 20 Hz; i.e., number of pulses/s). In separate blocks, 
the participants were instructed to report either the auditory 
or the visual rate as “task-relevant” information, signaling 
their response with a button-press. To quantify how the 

discrepancy of crossmodal information influences behavior 
(Körding et al., 2007), we manipulated visual and auditory 
rates independently (i.e., they could either be congruent or 
incongruent across trials; Fig. 1 colormap). To quantify the 
reliability-dependent influence of one modality onto another, 
we varied the signal-to-noise ratio of the acoustic 
information. The paradigm thus comprised a factorial 4 
(visual rates) by 4 (auditory rates) by 2 (auditory reliabilities) 
by 2 (task relevance) design. During this task, participants’ 
brain activity was recorded using magnetoencephalography 
(MEG) that is equipped to measure how neural signals unfold 
during a single decision. There were 22 trials per condition. 

 

Fig. 1: Task structures and experimental manipulations 
(colormaps). See Methods for details. 

Study 2 and 3 replaced the rate stimuli with spatial stimuli 
in order to test the generalizability of our hypothesis while 
omitting the modality-specific task switch (i.e., auditory 
localization task only). Study 2 (N = 22) required participants 
to make speeded judgements under time pressure (controlled 
by an adaptive reaction-time (RT) deadline), while Study 3 
(N = 12) leveraged a masking paradigm in order to test the 
extent to which interrupting the short-term memory trace of 
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unisensory information at different points in time would 
hinder CI differently. The auditory spatial signal (33 ms; 
white-noise burst convolved with head-related impulse 
response) was onset-synchronized with a visual signal (33 
ms; 25 white dots on a grey background). The visual dots 
were drawn from a 2D Gaussian distribution centered on one 
of the four locations and with variable horizontal standard 
deviation controlling for the visual reliability about the 
estimation of the cloud origin (see Fig. 1; each participant 
completed ≥ 1792 trials in total, i.e., ~ 60 trials per condition). 
In the masking study, participants used a mouse cursor to 
localize the transient auditory signal (17 ms) in the presence 
of a synchronized visual signal subsequently masked by a 
large canvas of dots. The stimulus-mask SOA varied trial-by-
trial randomly across 2 conditions: 150 ms vs. 200 ms. 
Unisensory localization (auditory and visual) trials were 
interleaved within the multisensory trials in Study 3. 

 

Fig. 2: Schematic of different sensory causal structures giving rise 
to visual and acoustic stimuli. Top of (A) to (C): inferred causality. 
Bottom: probability distribution of the perceived stimulus feature, 
and of the sensory estimate derived under different assumptions 
about the causal structure. (D) Each candidate model predicts a 
unique relationship between crossmodal disparity (distinct visual vs. 
auditory rates are characterized by a large disparity) and bias 
(deviation of the final estimate from the true attribute). 

Results 

General modelling framework: We compared the 
predictions of three classes of models concerning 
participants’ behavior. Each model encodes probability 
distributions over sensory signals and incorporates rules that 
govern how a prior belief about the sensory causal structure 
is combined with incoming information to judge the event 
rate in the task-relevant modality (Fig. 2). These models 
make distinct predictions about how the perceived event rate 
varies with experimental manipulations (crossmodal 
disparity, i.e., the difference between auditory and visual 
rates; cue reliability; and task relevance). One key behavioral 
variable is the level of crossmodal bias, i.e., the extent to 
which judgements about the relevant modality are biased by 
the irrelevant modality, and how this bias varies with 
disparity. The segregation model proposes that sensory 
estimates are fully independent and predicts no crossmodal 
bias. The fusion model instead predicts a bias that grows 
linearly with disparity, because relevant and irrelevant 
sensory signals are fused irrespective of their congruency. 
Finally, the inference model allows for an additional 
inference about sensory causality, i.e., that observers allow 
for some signals to be fused and some to be segregated, and 

that fusion is more likely for signals having a similar rate 
(Körding et al., 2007). This inference model predicts that the 
bias increases with disparity and relative cue reliabilities, but 
critically, it predicts that the growth rate of bias should 
diminish for highly discrepant information that is unlikely to 
originate from a common source, i.e., reflecting a nonlinear 
dependency of bias on disparity, in contrast to the fusion 
model predicting a linear dependency. 

Study 1---Temporal hierarchy of multisensory inference 

A CI model formulated with a free probabilistic belief of 
common cause (pc) explained the data better than did models 
that did not incorporate the inference of latent cause(s) (i.e., 
segregation and reliability-weighted fusion; group-level 
Bayesian (BIC) and corrected Akaike Information Criterion 
(AICc) relative to CI ≥ 468 and 547, respectively). We further 
examined why CI outperforms the other models in describing 
the behavioral responses, using an alternative analysis. 
Specifically, we quantified crossmodal bias, defined as the 
deviation of participants’ response from the actual task-
relevant rate (Fig. 3A), and used a general linear model 
(GLM) to predict how the magnitude (i.e., absolute value) of 
this bias depended on the contextual factors: task, reliability, 
their interaction, as well as disparity (Fig. 3B; all effects were 
assessed using maximum-statistics permutation controlling 
for multiple comparisons, family-wise error FWE = 0.05). 
Importantly, we included an effect of squared disparity in this 
model to capture whether the bias scales nonlinearly with 
disparity, as predicted by CI, or simply follows a linear 
dependency, as predicted by sensory fusion. A reliability-
weighted cue combination is captured by the interaction 
between task and reliability rather than by the main effect of 
reliability. This is because reliability was manipulated only 
for the acoustic signal, which, under reliability-based cue 
weighting, would result in different biases for the two tasks. 
Indeed, this GLM revealed no main effects of task (t(14) = 
1.84, mean β = 0.097, SEM = 0.053) and auditory reliability 
(t(14) = 1.91, mean β = 0.043, SEM = 0.022), but a significant 
interaction between task relevance and auditory reliability 
(t(14) = -6.36, mean β = -0.16, SEM = 0.025). Lastly, the 
GLM revealed a significantly negative effect of squared 
disparity (t(14) = -9.28, mean β = -0.21, SEM = 0.022), 
confirming a reduction of the bias growth rate for larger 
disparities (i.e., nonlinear scaling) as suggested by CI. 

 
Fig. 3: (A) Crossmodal bias, reflecting the disparity-dependent 

influence of the task-irrelevant cue. (B) GLM quantifying the 
influence of task (T; visual task minus auditory task), auditory 
reliability (AR; low minus high), and the linear and quadratic effects 
of the absolute disparity on the absolute bias. (C-D) RSA model 
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encoding timecourses for fusion and CI, and the relevant brain 
regions encoding each model (see also Cao et al., 2019). 

At the neural level, using spatiotemporal RSA to source-
localized MEG, we reveal that the distinct computations 
required for flexible multisensory perception (segregation, 
fusion and CI) coexist, but each dominates at different points 
in time and in distinct regions. The initially segregated 
unisensory signals are fused in temporal and parietal lobes 
(Fig. 3C). However, this fused information gives way to more 
flexible representations formed under multisensory CI in the 
frontal cortex (Fig. 3D). 

Study 2---Stronger fusion in faster decisions 

Behavior: A general linear model (GLM) was used to predict 
how the magnitude (i.e., absolute value) of the bias depended 
on RT level (4 bins), visual reliability, their interaction, as 
well as crossmodal disparity (Fig. 4B; all effects were 
assessed using maximum-statistics permutation controlling 
for multiple comparisons, family-wise error FWE = 0.05). 
Similar to Cao et al. (2019), we included an effect of squared 
disparity in this model to capture whether the bias scales 
nonlinearly with disparity, as predicted by Bayesian models 
of CI (t(21) = -3.99, mean β = -0.083, SEM = 0.021). The bias 
was dependent on visual reliability, indicating reliability-
weighted influence of the task-irrelevant visual cue (t(21) = -
9.59, mean β = -0.37, SEM = 0.039). Importantly, this GLM 
revealed a significant effect of RT (t(21) = -6.72, mean β = -
0.194, SEM = 0.029), and a significant interaction between 
RT and linear dependency of the bias on disparity (t(21) = -
5.03, mean β = -0.13, SEM = 0.026). The visual bias 
significantly increases with faster RTs, and the rate of bias 
growth with respect to disparity ramps towards fusion for 
faster RTs (Fig. 4B). 

Computational modeling: We first fit the CI model to 
each participant’s data by varying freely only 1 model 
parameter across the 4 RT bins. Model comparison shows 
that both a decreasing probabilistic belief of common cause 
pc and decreasing auditory noise over time could similarly 
capture the time-varying decreasing crossmodal bias (see Fig. 
4C). It might seem tricky to interpret why pc decreases over 
time within a trial since such a parameter has been commonly 
assumed as a long-term statistical ‘prior’. Here, we show that 
a novel probabilistic model updating across time the posterior 
belief of common cause provides naturally a parsimonious 
account for the observed decreasing pc (Fig. 4D). This model 
simulates 5,000 trajectories of the common-cause posterior 
for each experimental condition (equation below: where 
�⃗�#$%,'…) and �⃗�*+,,'…) encapsulates the overall visual and 
auditory evidence accumulated until time t, respectively; c is 
the hidden cause underlying audio-visual signals: c=1 
indicates common cause). 

𝑝.𝑐 = 1|�⃗�#$%,'…), �⃗�*+,,'…)3

=
𝑝.𝑥#$%,), 𝑥*+,,)5𝑐 = 13𝑝.𝑐 = 1|�⃗�#$%,'…)6', �⃗�*+,,'…)6'3
∑ 𝑝.𝑥#$%,), 𝑥*+,,)5𝑐3𝑝.𝑐|�⃗�#$%,'…)6', �⃗�*+,,'…)6'38

 

 

A free parameter q sets a threshold which the noisy 
posterior trajectories first cross, thus resulting in simulated 
RTs and multinomial choice probabilities. The agent tends to 
fuse audio-visual signals when hitting the q threshold, while 
it tends to segregate signals when hitting the (1-q) threshold 
(example trajectories shown in Fig. 4D left). Each 
participant’s data were binned every 100 ms from 0 to 1500 
ms post-stimulus onset, and a non-decision time parameter 
captured sensorimotor processing time. A key parameter in 
this model is the initial pc (a common-cause belief held before 
accumulating audio-visual evidence encoded in working 
memory traces). As shown in simulations (Fig. 4D middle), 
for values of the initial pc > 0.25 (congruency rate in current 
task), fitting the CI model independently to the data at each 
time point would result in a decreasing trajectory of pc, thus 
explaining qualitatively the observed data in Study 2. This 
dynamic model also predicts that for a decreasing trajectory 
of pc, the initial common-cause belief should be higher than 
the task statistics of 0.25. By fitting this model to each 
participant’s RT and choice data, we indeed observed that the 
mean for the estimated initial pc = 0.75 (SEM = 0.031 across 
participants; Fig. 4D right). 
Study 3---Stronger fusion at earlier mask latency 

As mentioned above, an alternative explanation for Study 
2’s results is that the slower decisions were solely 
characterized by a more precise sensory representation for the 
auditory signal (sensory refinement over time). This 
possibility was tested in Study 3 (masking paradigm). Of 
note, the mechanism of model progression (fusion progresses 
to CI) and this ‘sensory refinement’ account would make 
distinct predictions in the masking task. Specifically, only the 
former predicts an increase of audiovisual fusion for shorter 
mask latency. This is because an inference about the sensory 
causal structure of the world requires the brain to maintain at 
least partial access to the representations of individual cues 
beyond the fused representation. By analyzing the probability 
of fusion [i.e., percent bias: (response – auditory)/(visual – 
auditory), a significantly stronger fusion was found at the 
shorter mask SOA (Fig. 5A). This effect mainly originated 
from the conditions with smaller audiovisual disparities, 
which fits with the observations in a previous work (Körding 
et al., 2007; Fig. 5B). The inference about independent 
sensory causes at the relatively longer SOA (200 ms) likely 
promoted the repulsive (negative) bias in the opposite 
direction to the task-irrelevant visual signal. Importantly, the 
unisensory representations (quantified using localization 
precision in the interleaved unisensory trials) did not change 
significantly across SOA, thus unlikely played a role in 
inducing the time-varying effect of fusion (Fig. 5C).  

In sum, the brain appears to arbitrate between the 
expediency of sensory fusion (for better precision) and the 
imperative to perform causal structure inference (for lower 
bias), by orchestrating the two processes in a temporal 
sequence and along a cerebral hierarchy to guide flexible 
behavior. 
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Fig. 4: (A) Crossmodal bias varies with reaction time (RT), disparity, and reliability. (B) GLM predicting bias magnitude. (C) Both a 
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Fig. 5: (A) Percent bias as a function of stimulus-mask onset SOA. (B) Repulsion effect (figure adapted from Körding et al. 2007 Figure 
3b). (C) Non-significant effect of stimulus-mask SOA on unisensory precision measured in interleaved unisensory trials. 
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