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Abstract
Various computational accounts have been proposed to
explain how sensorimotor decisions are biased by value.
Although the longstanding dominant account has been
the Starting Point Bias model, where the starting point of
an evidence-accumulating decision variable is shifted to-
wards the higher value bound, our group recently showed
that fast biased decisions are best explained by a Drift
Rate Bias model, where the mean tendency of the deci-
sion variable is itself biased by value (Afacan-Seref et al.,
2018). This account is consistent with an enhancement
of representations of higher value alternatives at the sen-
sory level, but there has yet been no empirical neural ev-
idence for such enhancement. Our study examined this
by recording EEG data during a value-biased orientation
discrimination task under a strict deadline, where each
target orientation has a different value.

Our neurophysiological analyses revealed that there
was no value modulation of the early sensory activity
and behavioural data was best fitted by a model in which
Drift Rate biases are implemented through a Biased Ur-
gency signal. These findings further demonstrate the in-
adequacy of standard models in explaining highly time-
constrained, value-biased decisions, and highlight novel
computational architectures that may explain the more
complex decision formation dynamics unfolding in such
scenarios, which are prevalent in real life.
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Introduction
Researchers of perceptual decision making have long focused
on two possible mechanisms by which value can bias the de-
cision process. The most prominent of these accounts sug-
gests a shift in the starting point of the evidence accumulation
process towards the higher-value bound. Such Starting Point
Bias accounts have been found to provide an excellent quan-
titative fit to behavioural data across a large number of psy-
chophysical tasks (e.g. Ratcliff & McKoon, 2008; Summerfield
& Tsetsos, 2012), far better than the main rival account the
Drift Rate Bias model. This approach considers that value bi-
ases affect the mean tendency of the decision variable, or drift
rate, which is consistent with an enhancement of the repre-
sentation of the higher value alternative at the sensory level,

because stronger sensory evidence would lead to a steeper
build-up of its integral. However, recent evidence shows that
fast biased decisions about color are best explained by a Drift
Rate Bias model when one allows for temporally increasing
drift rate (Afacan-Seref et al., 2018). However, this study
wasnt able to provide a direct evidence of sensory modula-
tion, leaving unclear what were the exact neural mechanisms
underlying this drift rate bias.

Figure 1: Orientation discrimination task

Visual information is first encoded by primary visual cor-
tex (V1), which a long line of human electroencephalogra-
phy (EEG) studies have shown is reflected in the earliest
component of the visual evoked potential C1 (Clark et al.,
1994; Di Russo et al., 2002; Gonzalez et al., 1994). It has
been suggested that this initial V1 activity is impenetrable to
cognitive influences, and that the earliest top-down modula-
tions occur in extrastriate cortex (e.g. Martinez et al., 1999).
However, neurophysiology, neuroimaging and microstimula-
tion studies have suggested that these sensory cortical rep-
resentations could be biased by their association with value
(Cicmil, Cumming, Parker, & Krug, 2015; Rorie, Gao, McClel-
land, & Newsome, 2010; Serences & Saproo, 2010; Stanisor,
van der Togt, Pennartz, & Roelfsema, 2013) (Cicmil, Cum-
ming, Parker, Krug, 2015; Rorie, Gao, McClelland, New-
some, 2010; Serences Saproo, 2010; Stanisor, van der Togt,
Pennartz, Roelfsema, 2013), suggesting that the V1 might
not be impenetrable to reward-related factors.
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In the present study we examined whether drift rate bi-
asing mechanisms under conditions of intense speed pres-
sure extend to decisions about the feature of orientation,
and whether early visual cortical representations of orienta-
tion are themselves biased by value. To do this we recorded
EEG (Biosemi), eye-position (Eyelink) and electromyography
(EMG) of the flexor policis brevis muscle during a value-biased
orientation discrimination task under a strict deadline, where
a correct response to one orientation was worth more (40
points) than the other (10).

Twenty-three individuals participated in this study. During
the task, participants had to discriminate between left and
right oriented gratings. The relative value of these changed
across trials and was indicated with the presentation of a cue
preceding the target stimulus (Figure 1).

Because V1 architecture is extremely variable across indi-
viduals, our group has developed a novel procedure that is
able to map the individual retinotopic organization of the V1
region by manipulating flicker-phase offsets among angular
segments of a large annular stimulus (Vanegas, Blangero, &
Kelly, 2013). We then averaged these results across partici-
pants and selected the two locations that produced the most
reliable C1 component. The targets in our task were placed on
those locations, lying on the right and left side of the vertical
meridian and far from the Centro Parietal Positivity.

Results
As expected, errors were more frequent (p<.001) and were
committed with greater haste (p<.01) on low value trials such
that the fastest responses were purely value driven and the
slowest entirely sensory-driven (hence correct).

Figure 2: BIC values

The same Starting Point Bias and Drift Rate Bias models
from Afacan-Seref et al. (2018) were fitted to the data and
Bayesian Information Criterion (BIC) scores were calculated
for each of these 4 models (Figure 2). As in Afacan-Seref et al.
(2018), a Drift Rate Bias model (DRB-IE, Figure 2) explained
behaviour best out of these 4 models.

Despite this, neurophysiological analyses revealed that the
initial C1 component of the visual evoked potential (VEP),

Figure 3: Early sensory activity

thought to reflect primary visual cortical activation, showed no
signs of significant value modulation (p >.1) for either correct
responses or for errors (Figure 3).

A Starting Point Bias mechanism around target onset was
observed in the Lateralized Readiness Potential (LRP), across
the different value conditions. Interestingly, this starting point
bias seemed to increase with time (Figure 4).

Figure 4: Motor preparation signal (LRP)

Because the models fitted to the data cannot account for
such an effect in the LRP signal and their drift rate bias
couldnt be explained by a modulation of the C1 activity, a
new neurally-informed model was designed (see supplemen-
tary information for a better description of the model), following
the work of Hanks et al. (2011), where a biased urgency signal
was introduced for prior probability effects, that could account
for such LRP deflections and provided a mechanism for the
implementation of Drift Rate Bias (Figure 5).

When fitted to the behavioural data, the new model fitted
better than any of the other models (Figure 2, 5th model la-
belled Urgency). In order to test the ability of this model to

555



Figure 5: Urgency model

quantitatively reproduce both the neural dynamics and be-
haviour, we constrained a parameter marking the time of on-
set of the growing urgency signal so that it matched that of
the real LRP - a value of -0.4 sec. Qualitatively, this did not
compromise the behavioural fit of the model and when used
for simulating LRP data, it was able to mimic the real signals
behaviour (Figure 6).

Figure 6: LRP Simulation

Conclusion

We have replicated Afacan-Seref et al. (2018) results in an ori-
entation discrimination paradigm, where a model that includes
Drift Rate Biases fits better than a Starting Point Bias one.
However, no value modulation of the sensory information was
found. There is another possibility in which drift rate biases
could be implemented, other than at the sensory level, they
could be implemented at a later processing stage such as the
motor level. We have presented a neurally informed model,
which implements drift rate biases in the form of urgency sig-
nals and is able to account for behavioural and neural data,
better than any of the other models fitted so far.

This study then, provides evidence against value modula-
tions of the sensory information during rapid value-biased de-
cisions and suggests a novel neurally informed computational
account that can explain behavioural data, evidence accumu-
lation and motor preparation dynamics. These results are
important because the brain processes that underlie value-
guided sensorimotor decisions are fundamental to natural be-
haviour and are dysfunctional in a wide range of disorders in-
cluding depression, addiction and obsessive-compulsive dis-
order. This study could shed light on the mechanisms under-
lying these dysfunctions.

Supplementary material
The dynamics of the one-dimensional decision variable (DV),
x, described by the discrete difference equation.

x(t) = x(t −1)+urate∗dt +[d ∗dt +N(0,s)]e(t)

urate = N(±ub,su)

e(t) =
{

0 when t <evonT
1 when t ≥ evonT

}
Where dt is the discrete time increment, urate is the rate

of increase of the urgency signal, N(0,s) refers to Gaussian
noise with zero mean and variance s, e(t) represents the ap-
pearance of the evidence and so, the start of the evidence
accumulation process. Ub is the mean of the urgency signal
which has a positive sign for High Value conditions and a neg-
ative one for Low Value ones. Whereas su is the standard
deviation for the urgency rate and d is the mean of the noisy
evidence that onsets at time evonT.
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