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Abstract

Deep convolutional neural networks (DCNNs) optimized
for visual object categorization have achieved success in
modeling neural responses in the ventral visual pathway
of adult primates. However, training DCNNs has long re-
quired large-scale labelled datasets, in stark contrast to
the actual process of primate visual development. Here
we present a network training curriculum, based on re-
cent state-of-the-art self-supervised training algorithms,
that achieves high levels of task performance without the
need for unrealistically many labels. We then compare
the DCNN as it evolves during training both to neural
data recorded from macaque visual cortex, and to de-
tailed metrics of visual behavior patterns. We find that
the self-supervised DCNN curriculum not only serves as
a candidate hypothesis for visual development trajectory,
but also produces a final network that accurately models
neural and behavioral responses.
Keywords: Ventral visual stream; visual development; deep

convolutional neural networks; self-supervised learning; semi-
supervised learning

Introduction

Deep Convolutional Neural Networks (DCNNSs) trained to
solve high-variation object recognition tasks have been shown
to be quantitatively accurate models of neural responses in the
ventral visual stream of adult primates (Yamins et al., 2014;
Kriegeskorte, 2015; Cadena et al., 2019). These same net-
works also generate visual behavior patterns that are consis-
tent with those of humans and macaques (Rajalingham et al.,
2018). Though this progress at the intersection of machine
learning and computational neuroscience is intriguing, there is
a fundamental problem confronting these approaches: train-
ing DCNNs has long used heavily supervised methods involv-
ing huge numbers of high-level semantic labels. For example,
state-of-the-art DCNNs for visual object recognition are typi-
cally trained on ImageNet (Deng et al., 2009), comprising 1.2
million labeled images. When viewed as mere technical tools
for tuning network parameters, such procedures can be ac-
ceptable, although they limit the purview of the methods to
situations with large existing labelled datasets. However, as
real models of biological learning, they are highly unrealistic,
since humans and primates develop their visual systems with
very few explicit labels (Braddick & Atkinson, 2011; Atkinson,
2002; Harwerth, Smith, Duncan, Crawford, & Von Noorden,
1986; Bourne & Rosa, 2005). This developmental difference
significantly undermines the effectiveness of DCNNs as mod-
els of visual learning.

Motivated by the need for more label-efficient training pro-
cedures, deep learning researchers have been actively de-
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veloping methods of self- and semi-supervised learning algo-
rithms that train DCNNs with very few or no labels (Caron et
al., 2018; Wu et al., 2018; Doersch et al., 2015; Zhang et al.,
2016; Zhuang, Zhai, & Yamins, 2019; Tarvainen & Valpola,
2017; Zhuang, Ding, et al., 2019). Although the performance
of these models is still below that of their supervised coun-
terparts, recent progress with deep embedding methods has
shown substantial promise in bridging this gap (Caron et al.,
2018; Wu et al., 2018; Zhuang, Zhai, & Yamins, 2019; Zhuang,
Ding, et al., 2019).

In this work, we show that the feature representations
learned by these state-of-the-art self- and semi-supervised
DCNNs model the adult ventral visual stream just as effec-
tively as those of category-supervised networks. This, in turn,
allows us to design a training curriculum that better simu-
lates the real developmental trajectory of the visual system.
More specifically, we first train DCNNs on self-supervised vi-
sual tasks, simulating the learning in early infancy when su-
pervision is entirely absent (Cooper & Aslin, 1989). We find
that the best of these “self-DCNNs” — based on the state-of-
the-art Local Aggregation approach to training deep embed-
dings (Zhuang, Zhai, & Yamins, 2019) — predicts neural re-
sponses in primate V4 and IT areas with high accuracy, map-
ping these brain areas to anatomically reasonably intermedi-
ate and late hidden layers respectively. In fact, this self-DCNN
has somewhat better V4 and IT neural prediction performance
than its supervised counterpart. Unsurprisingly, however, the
visual categorization behavior produced by the output layer
of the task-generic self-DCNN is somewhat less consistent
with that of humans and monkeys than that of network trained
on categorization tasks. To address this gap, we then train
the self-DCNNs using semi-supervised algorithms with a very
small number of labelled data points, simulating late infancy
when a modest amount of supervision occurs (Cooper & Aslin,
1989; Topping, Dekhinet, & Zeedyk, 2013). The resulting
“semi-DCNNs” produce behavioral outputs that are substan-
tially more similar to that of humans and monkeys than those
of self-DCNNs, approaching the behavioral consistency levels
of supervised networks. Taken together, our results suggest
that this “self-then-semi-supervised” curriculum not only pro-
duces accurate models of the ventral visual stream, but also
may serve as a candidate quantitative hypothesis for neural
changes during visual development.

Results

Our curriculum approximates visual development using two
stages: a self-supervised stage and a semi-supervised stage
(see Fig. 1A). To evaluate the effectiveness of the trained DC-
NNs in modeling the ventral visual stream, we report their
neural prediction performance for neurons in V4 and IT cor-
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Figure 1: lllustration of the DCNN training curriculum and evaluation metrics for modeling the ventral visual stream. (A) Two-
stage “self-then-semi-supervised” training curriculum. Gray dots represent unlabeled visual inputs, red dots labeled visual inputs.
(B,C) To compute neural prediction performance for V4 and IT cortical areas, we first run the DCNNs on the stimulus for which
neural responses were collected. DCNN unit activations from each convolutional layer are then used to predict the V4 and IT
neural responses with regularized linear regression as in (Klindt et al., 2017). For each neuron, the Pearson correlation on
held-out validation images between the DCNN-predicted responses and the recorded responses is computed. The medians
of these Pearson correlations across neurons in each brain area are then reported as summary statistics. Neural data are
from (Majaj et al., 2015). (D) To measure behavioral consistency, we follow the method of (Rajalingham et al., 2018; Schrimpf et
al., 2018), in which linear classifiers are trained from each model’'s penultimate layer on a set of images from 24 common classes
(“dog”, “wrench”, “pen”, &c). The resultant image-by-category confusion matrix is compared to data from humans and monkeys
performing the same alternative forced choice task. We report the “behavioral predictivity” metric in (Schrimpf et al., 2018).

tical areas (see Fig. 1C) and visual categorization behavioral timal neural prediction performance.

consistency to humans and monkeys (see Fig. 1D). Semi-supervised stage. Although the internal layers of the

LA-DCNN show high accuracy in predicting V4 and IT neural
responses, its final-layer outputs are less consistent with fine-
grained metrics of visual categorization behavior in humans
and monkeys than those of category-supervised DCNNs (see
Fig. 3C). To fill this gap, we further train LA-DCNN using semi-
supervision with 3% of labels in the ImageNet dataset — e.g.
36k distinct labelled datapoints, a number that is consistent
with developmental measurements (Topping et al., 2013). We
test two recent high-performing semi-supervised algorithms,
including Mean Teacher (Tarvainen & Valpola, 2017) (MT, see
Fig. 3A), and Local Label Propagation (Zhuang, Ding, et al.,
2019) (LLP, see Fig. 3B). We find that LLP is significantly more
behaviorally consistent than MT, and all the unsupervised net-
works. This result is consistent with the fact that LLP substan-
tially outperforms MT on visual tasks, especially in the low-
label regime (Zhuang, Ding, et al., 2019).

Self-supervised stage. In this stage, we compare sev-
eral representative self-DCNNs, which represent different hy-
potheses for visual learning in early infancy. These can be
organized into two families: single-image statistic (SIS) algo-
rithms (Fig. 2A) and multi-image distribution (MID) algorithms
(Fig. 2B). SIS algorithms, including image colorization (Zhang
et al., 2016) and surface-normals/depth estimation (Laina et
al., 2016), supervise models with statistics either directly ex-
tracted from visual inputs or available from other biological
sensory signals (see Fig. 2A). MID algorithms optimize visual
representations so that the feature distribution across many
inputs meets some specific requirement (see Fig. 2B). We
find that SIS-based self-DCNNs accurately predict neural re-
sponses for V4 neurons (but not for IT neurons) while MID-
based self-DCNNs show high levels of neural prediction per-
formance for both V4 and IT neurons (see Fig. 2C). All self-
DCNNs show a similar brain mapping correspondence, with
mid-level representations best predicting V4 neural responses
and high-level representations best predicting IT neural re- While our results represent progress toward a plausible ac-
sponses (see Fig. 2D). We find that the self-DCNN based on count of how un- and semi-supervised visual experience may
the Local Aggregation (LA), which has recently been shown to shape higher visual representations, there is still a significant
achieve state-of-the-art unsupervised visual recognition per- gap in behavioral consistency between the LLP-DCNN and
formance (Zhuang, Zhai, & Yamins, 2019), also achieves op- the best supervised DCNNs (Rajalingham et al., 2018). We

Discussion and Future Directions
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Figure 2: Self-supervised visual tasks and neural prediction. (A) Single-Image Statistics (SIS) tasks. For Relative Position
(RP) (Doersch et al., 2015), the DCNN receives two patches from one image and classifies their spatial organization. For
Colorization (Col) (Zhang et al., 2016), the DCNN receives a gray-scale image and predicts its per-pixel RGB values. For Depth
Prediction (DP), the DCNN receives a RGB image and predicts the per-pixel relative depth generated by standardizing the depth
across the whole image. The implementation follows (Laina et al., 2016). (B) Schematic for Multi-Image Distribution (MID)
algorithms. All images are first embedded into a lower dimensional space using DCNNs. For Deep Cluster (DC) (Caron et al.,
2018), K-means is applied to the embeddings and the cluster labels are used as category labels to train the DCNN. For Instance
Recognition (IR) (Wu et al., 2018), the DCNN is optimized to maximize the distances between the embedding of the current
input (red dot) and the embeddings of all the other images (gray dots). For Local Aggregation (LA) (Zhuang, Zhai, & Yamins,
2019), the DCNN is optimized to minimize the distance to “close” embedding points (blue dots) and to maximize the distance to
the “further” embedding points (black dots) for the current input (red dot). (C) V4 and IT neural prediction performance of the
best layer in DCNNs trained using different self-supervised tasks. “UT” represents an untrained ResNet-18. “Cat” represents a
ResNet-18 trained on the ImageNet categorization task. Error bars represent standard deviation computed from 5 independent
train-validation splits. (D) V4 and IT neural prediction performance of all layers for LA-trained DCNN. The x-axis represents the
number of convolutional layers away from the inputs.

hope future semi-supervised algorithms can help bridge this Bambach, S., Crandall, D. J., Smith, L. B., & Yu, C. (2017).

gap. Moreover, the current DCNN training uses ImageNet im- An egocentric perspective on active vision and visual object
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ment. For example, DCNNs receive static and independent of the primate visual cortex, as revealed by neurofilament
images during training, whereas infants receive a continuous immunoreactivity: early maturation of the middle temporal
stream of inputs that are temporally correlated and object- area (mt). Cerebral cortex, 16(3), 405—414.
centric (Bambach, Crandall, Smith, & Yu, 2017). We hope  Braddick, O., & Atkinson, J. (2011). Development of human
to incorporate these ideas, and tighten the connection to de- visual function. Vision research, 51(13), 1588—1609.
velopmental data, in future work. Cadena, S. A., Denfield, G. H., Walker, E. Y., Gatys, L. A,,
Tolias, A. S., Bethge, M., & Ecker, A. S. (2019). Deep con-
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Figure 3: Semi-supervision and behavioral consistency. (A) Schematic for the Mean Teacher (MT) (Tarvainen & Valpola, 2017)
algorithm. During training, the “student DCNN” is optimized to correctly categorize the labeled images and to produce simi-
lar predictions to another “teacher DCNN” whose weights are exponential averages of the weights of the student DCNN. (B)
Schematic for Local Label Propagation (LLP) (Zhuang, Ding, et al., 2019) algorithm. All images are first embedded into a lower
dimensional space (middle panel, colored points represent labeled images and unfilled point represent unlabeled images). For
each unlabeled image (x in the middle panel), a group of labeled images nearby in embedding space is identified (highlighted
colored points) and a pseudolabel is inferred by weighting the labels of these nearby images according to their distances to
as well as their local neighbor densities (highlighted unfilled points around these colored points). The inferred pseudolabels are
used to optimize the DCNN. (C) behavioral consistency of DCNNs trained by different tasks. “3% Cat” represents a ResNet-18
trained on ImageNet with only 3% of images labeled. The standard deviation of these measures across multiple runs is typically
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