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Abstract

Computational frameworks for the study of motor sys-
tems in neuroscience often rely on a mathematical for-
mulation based on optimal control theory, e.g., forward
and inverse models and linear quadratic Gaussian (LQG)
control architectures. A forward model maps actions
to (predicted) consequences, while an inverse model is
thought to define how motor commands are generated
from observations. One of the central tenets of the for-
ward/inverse architecture is the presence of a copy of
motor commands produced by an inverse model and pro-
vided to the forward counterpart. Such copy, usually re-
ferred to as “efference copy”, is assumed to be necessary
to model, and ultimately explain, motor control and be-
haviour. Over the years, different results have challenged
the idea of an efference copy, suggesting that it may not
be physiologically plausible, especially in humans. In
this work we focus on a process theory that combines
the mathematical richness of LQG models with efference-
copy-free architectures, active inference. We provide a
minimal computational model discussing and comparing
the forward/inverse and the active inference architectures
on an idealised model of a single-joint control system.
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Introduction

In the last few decades, computational approaches of motor
control have emerged as a prominent tool for the study of
behaviour in the biological sciences (Jordan, 1996; Kawato,
1999; Wolpert & Ghahramani, 2000; Todorov, 2004; Mc-
Namee & Wolpert, 2019). These frameworks are often based
on mathematical formulations of optimal control (Stengel,
1994), making use of forward/inverse and linear quadratic
Gaussian (LQG) control architecures popular in engineering
and robotics (Kawato, 1999; Todorov & Jordan, 2002; Mc-
Namee & Wolpert, 2019). In these architectures, perceptual
processes can be seen as the transduction of sensory input
to some internal (e.g., neural) representation and are often
depicted as estimators (Todorov, 2004) or forward models-
estimators (McNamee & Wolpert, 2019). These represen-
tations produce then (motor) actions via an inverse model
(Kawato, 1999) or controller (Todorov, 2004). Crucial to these
architectures is the presence of an “efference copy” (Kawato,

1999; Todorov, 2004; McNamee & Wolpert, 2019), represent-
ing information regarding an agent’s own actions to be dis-
counted from one’s estimations of sensory inputs. The no-
tion of an efference copy has, however, been comprehensively
challenged (Feldman, 2009; Friston, 2011; Adams, Shipp, &
Friston, 2013; Feldman, 2016). At the same time, the lack of
alternative, powerful mathematical frameworks, made of LQG
the dominant model for the study of behaviour and motor con-
trol (see Buhrmann and Di Paolo (2014) for a counterexam-
ple). An alternative approach maintaining strong connections
to Bayesian inference and optimal control theory while dispos-
ing with the need for a copy of motor signals is proposed with
active inference. In active inference the necessity for an effer-
ence copy is bypassed using a more powerful forward, or gen-
erative model, and trivial sensorimotor mappings in the form of
reflex arcs replacing complex inverse models/controllers, sim-
ilar to ideas of threshold or referent control (Feldman, 2009).
To investigate the potential of this proposal, here we provide
a simple mechanistic comparison between forward/inverse-
LGQ architectures and active inference.

Linear Quadratic Gaussian (LQG) control

In LQG schemes, an estimator (usually a Kalman or Kalman-
Bucy filter) and a controller (usually a linear quadratic regu-
lator, LQR) are coupled in a feedback loop and exchange in-
formation in two ways, see for instance Wolpert and Ghahra-
mani (2000); Todorov (2004). The estimator generates accu-
rate estimates of latent variables from observations and re-
lays them to the controller, which in turn produces a motor
command and sends a copy of it back to the estimator. This
copy is crucial to allow the estimator, used as a metaphor for
perceptual systems, to discount sensory consequences of an
agent’s own motor actions. In the absence of this informa-
tion, estimates of world variables quickly become imprecise
and subsequently motor actions become unstable (Friston,
2011). The notion of a copy of motor signals resonates with
the classical idea of efference copy in neuroscience (Crapse
& Sommer, 2008; Schwartz, 2016; Straka, Simmers, & Chag-
naud, 2018). Efference copy is thought to represent a copy of
signals from low-level motor areas that is sent to perceptual
processing areas in order to disambiguate movements per-
formed by an agent from environmental stimuli, although its
definition is often vague and mixed with the idea of corollary
discharge (Crapse & Sommer, 2008; Schwartz, 2016; Straka
et al., 2018). In the most prominent examples of LQG-based
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architectures in the cognitive sciences, efference copy is nec-
essary for appropriate estimations of hidden variables in the
world (Kawato, 1999; Wolpert & Ghahramani, 2000; Todorov,
2004; McNamee & Wolpert, 2019). The neurophysiological
evidence supporting efference copy is, however, conflicting
(Feldman, 2009; Adams et al., 2013; Feldman, 2016), with
alternative models that eschew this idea proposed by, for in-
stance, Friston (2011); Adams et al. (2013).

Active inference
Active inference is a process theory proposed to explain brain
functioning and other functions of living systems based on
Bayesian inference and optimal control theory (Friston, 2010;
Buckley, Kim, McGregor, & Seth, 2017). It is an algorithmic
implementation of the free energy principle (Friston, 2010),
proposing the minimisation of variational free energy, or under
simplifying assumptions prediction error, as a driving principle
for the study of cognitive processes. The main difference with
respect to LQG architectures is that LQG-based models ex-
plicitly mirror (by construction, in the linear case) the dynam-
ics of the observed system, thus including knowledge of one’s
motor actions (i.e., an efference copy), aaa from now own, while
in active inference this vector is not explicitly modelled by an
agent, assuming that no copy of motor signals is available.
It is in fact proposed that a deeper duality of estimation and
control exists whereby, at the lowest level (i.e., a purely reflex-
ive account of simple motor tasks), actions are just responses
to the presence of prediction errors at the proprioceptive level,
irrespectively of the cause of sensations, self-generated or ex-
ternal (Friston, 2011; Adams et al., 2013). In recent accounts
of more complex behaviour under active inference, action is
cast as a problem of estimating (fictitious) control states uuu or
rather time-dependent policies πuuu that are inferred via the min-
imisation of expected free energy yyy (Friston et al., 2015). Both
these proposals support theories in motor neuroscience sug-
gesting that knowledge of such self-produced controls is not
available, and not necessary in fact, for motor control in bio-
logical systems (Feldman, 2009; Friston, 2011; Adams et al.,
2013; Feldman, 2016). In active inference, to replace actions
aaa in the generative model, a vector vvv is introduced that en-
codes prior beliefs (i.e., desired outcomes) about movement
trajectories in the external world (Friston, 2011). See Baltieri
and Buckley (2018, 2019a) for a discussion on some other
differences implied by the lack of efference copy.

The model
The double integrator is a canonical example used in control
theory (Åström & Murray, 2010), modelling single degree of
freedom systems, representing a block on frictionless surface
or, equivalently, the simplest model of single-joint movement
in motor neuroscience (Gottlieb, 1993). In this set up, a limb
segment (or a block) moves to reach a new position (for sim-
plicity, x = 0) and stop (velocity x′ = 0). Unlike the more tradi-
tional deterministic set up, we will introduce process and mea-
surement noise into the system, making the estimation of hid-
den states necessary. The equations and parameters for this

simulation follow a standard LQG implementation and can be
found in Baltieri and Buckley (2019a)1.

The LQG solution to the double integrator
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Figure 1: The double integrator solved using LQG. (a) Five
limb segments implementing LQG with different initial condi-
tions showing the observed trajectories of the blocks in the
phase-space (in blue) and the estimates of the trajectories (in
red). (b) Actions for the five limbs.

In Fig. 1a we can see how, in a standard implementation of
LQG, our limb (or block) is driven to the desired position x = 0
and velocity x′ = 0 from a set of 5 randomly initialised condi-
tions (zero-mean Gaussian distributed, sd=100). In Fig. 1b we
then simply show the actions over time of the same 5 exam-
ple limbs, all converging to zero since the systems effectively
reach their desired target. The main feature of LQG, and from
which active inference departs, is the reliability of estimates of
both position and velocity (the red line in the phase space).
In LQG, accurate estimates are necessary to then enact the
LQR component implementing a negative feedback mecha-
nism based on estimates x̂xx rather than true hidden states xxx.
When knowledge of the motor signals aaa is removed from a
Kalman-Bucy filter in an LQG set up, estimates of the hid-
den properties of the world become inaccurate and unstable,
as shown in Fig. 2 for the double integrator. In this example,
rather than converging towards the desired state, our simu-

1Code available at https://github.com/mbaltieri/doubleIntegrator.
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Figure 2: The double integrator solved using LQG with
no efference copy. (a) Five limb segments with different ini-
tial conditions showing the observed trajectories in the phase-
space (in blue) and the estimates of the same trajectories (in
red) when an (efference) copy motor signals aaa is removed. (b)
Actions for the five limbs.

lated limbs get away from it (Fig. 2a) since the new obser-
vations are too inaccurate given the lack of mechanisms to
discount the effects of aaa. In Fig. 2b we can then see that ac-
tions aaa begin to exponentially oscillate rather than converging
to zero, as in Fig. 1. This is due to one of the assumptions
for observability in Kalman(-Bucy) filters (Stengel, 1994), ex-
plicitly requiring knowledge of all inputs, including one’s motor
commands, and outputs of a system in order to determine its
latent states.

The double integrator with active inference

The generative model for the double integrator introduces pri-
ors representing an imaginary spring that pulls the limb back
to the origin (x = 0) and an imaginary damper that slows it
down (x′ = 0), see Baltieri and Buckley (2019a) where the
equations and parameters are introduced. In the simplest
case, the active inference solution is equivalent to a PID con-
troller (Baltieri & Buckley, 2019b), the “optimal” linear solution
when knowledge of one’s own actions aaa is not available in
the generative model. In Fig. 3 we can see an example im-
plementation of the double integrator using active inference.
Five simulated limb segments are initialised at random posi-
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Figure 3: The double integrator solved using active infer-
ence. (a) Five limb segments implementing active inference
agents with different initial conditions showing the observed
trajectories in the phase-space (in blue) and the estimates of
the trajectories (in red). (b) Actions for the five limbs.

tion and velocity (zero-mean Gaussian distributed, sd=100)
and Fig. 3a, and converge to the target solution where the
output actions are essentially zero (excluding some noise), as
expected Fig. 3b. The most striking feature is that estimates of
both position and velocity of the block are very inaccurate but
the limb nonetheless reaches the target in the phase space.
These differences are given by the generative model imple-
mented by the limb, encoding an imaginary spring-damper
system that pulls it towards its “desired” state.

Discussion and conclusions
In this work we introduced a minimal model of motor con-
trol for a system with a single degree of freedom (Gottlieb,
1993). Following standard computational approaches for the
modelling of motor functions relying on LQG architectures
(Todorov & Jordan, 2002; McNamee & Wolpert, 2019), we
discussed the importance of an “efference copy” (Crapse &
Sommer, 2008; Schwartz, 2016; Straka et al., 2018) of mo-
tor signals for solving even the simplest of tasks. A growing
body of work, in fact, nowadays challenges its definition and
proposes new paradigms that can eschew such copy (Adams
et al., 2013; Feldman, 2016). Without such a signal, repre-
senting a system’s own motor commands to be disambiguated
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from external stimuli, standard implementations LQG architec-
tures cannot solve even simple motor control tasks. To inves-
tigate alternative approaches, we discussed and compared a
proposal based on efference-copy-free architectures, active
inference. Active inference is a process theory derived from
the free energy principle (Friston, 2010), advocating the min-
imisation of variational free energy, or under simplifying as-
sumptions prediction error, as a driving principle for describ-
ing functions including perception, motor control and learn-
ing. To solve the same control problem we introduced, ac-
tive inference relies on the generation of predictions of pro-
prioceptive sensations (position, velocity and acceleration of
the agent in this case), followed by the implementation of ac-
tions in the world via (trivial) reflex arcs. The proprioceptive
modality is essentially treated as other inputs (vision, audition,
etc.) and estimates/predictions are generated using the same
generative model taking advantage of incoming propriocep-
tive sensations. This produces a considerably different control
system, with state estimates and actions now created by the
same (generative) model, making it hard to clearly separate
processes of perception and action, see Fig. 2 and related
discussion in Baltieri and Buckley (2018). The copy of motor
control signals (i.e., efference copy), necessary in standard
LQG settings to meet the observability constraints of Kalman-
Bucy filters (Stengel, 1994) is not included in this formulation.
Active inference postulates, in fact, that direct representations
of the causes of self-generated sensations need not be dis-
counted during the prediction of new incoming sensory inputs.
This could be seen as a limitation of active inference accounts
but, on the contrary, this may speak to the robustness of this
approach in face of unknown inputs, i.e., motor actions pro-
duced by an agent as seen here or exogenous forces from
the environment as proposed in Baltieri and Buckley (2019b,
2019a).
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