
Human-Like Judgments of Stability Emerge from Purely Perceptual Features: 
Evidence from Supervised and Unsupervised Deep Neural Networks 

 
Colin Conwell (conwell@g.harvard.edu) 

Fenil Doshi (fenil_doshi@fas.harvard.edu)   
George A. Alvarez (alvarez@wjh.harvard.edu) 

Department of Psychology, 33 Kirkland Street, 
Cambridge, Massachusetts 02139 

 
Abstract 

At a glance, the human visual system transforms complex 
retinal images into generic feature representations useful for 
guiding a wide range of flexible, efficient behaviors. In this 
report, we provide evidence that the feature representations 
that arise from purely feedforward neural networks are 
sufficient to explain seemingly high-level human judgments, 
such as how stable a tower of blocks appears to be. Using this 
now paradigmatic intuitive physics task as a case study, we 
attempt to linearly decode stability from the features of two 
deep neural networks – a supervised network trained on 
ImageNet, and a variational autoencoder trained only to 
reconstruct images of block towers from various perspectives 
– neither of which were ever taught stability per se. Decoding 
almost exclusively above chance in both cases, and with a 
classifier that produces responses virtually indistinguishable 
from human responses when trained on ImageNet features, 
our results demonstrate that systems designed mainly for 
pattern recognition, entirely void of explicit physical 
parameters and never trained on physics, nevertheless learn 
visual features that reliably undergird physical inference in 
the judgment of stability. More generally, these findings 
suggest that even seemingly high-level human physical 
reasoning may be grounded in a direct readout of basic 
perceptual feature representations. 
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Introduction 
Exposed for a fraction of a second to various visual stimuli, 
human subjects extract relatively massive amounts of 
surprisingly sophisticated information: the trustworthiness of 
a face, the centroid of complex shapes, and – directly relevant 
to our purposes in this paper – even the stability of a tower of 
randomly arranged blocks (Firestone & Scholl, 2016). In 
some cases, this extraction takes less than a 20th of a second. 
The speed at which we can decode these bits of meaning in 
general is taken as evidence that the decoding happens not at 
the level of some abstract cognitive process, but directly in 
the rapid cascade of perceptual processing that occurs 
immediately after the presentation of a stimulus. The 
modeling of this ‘feedforward’ processing – predominantly 
encapsulated from computations performed elsewhere in the 

brain – we increasingly entrust to deep neural networks 
trained to do one thing and one thing only: the nonlinear 
regression of raw inputs (pixels, waveforms, words and 
numbers) onto various predictors. This is a computation we 
might also call statistical pattern recognition.  
 
A growing wealth of data suggests our trust in these models 
is not misplaced, and that the feature representations they 
learn correspond strikingly with biological reality (Yamins & 
DiCarlo, 2016). But are they useful as models of judgments 
that extend beyond the typical purview of sense-percepts? 
How do they fare in purportedly more complex domains?  
 
Whether you’re mastering levitation with a hydroflight 
jetpack or simply putting one foot in front of the other, 
‘intuitive physics’ is your common sense of a physical world 
defined by contingencies, multidimensionality and often 
inscrutable latent causality – and it is precisely a domain in 
which one might expect the feature-based pattern recognition 
of neural networks to break down.  
 
 Given the complexity and latent structure of the physical 
world, predominant models of intuitive physics posit that our 
intuitive physical capabilities are at their core the product of 
a cognitive architecture that includes a more or less complete 
‘physics engine’, akin to the kind deployed in video games 
and computer graphical animation (Battaglia and Colleagues, 
2013; Ullman and Colleagues, 2017), innately equipped with 
effectively all the parameters necessary to perform complex 
simulations of physical scenarios in real time. Inference in 
this formulation is accomplished by iteratively and 
repeatedly sampling this simulator – primed by perception 
but powered exclusively by cognition.   
 
 In the current report, we explore an alternative model of 
intuitive physics based on the pattern recognition capabilities 
of deep neural networks, wherein physical inference is 
reformulated as a problem of identifying those perceptual 
features that serve as optimal proxies for the real physical 
properties that produce them. Previous work including our 
own (Conwell & Alvarez, CCN2018, Zhang & Colleagues, 
2016; Lerer & Colleagues, 2016) has mainly focused on 
training networks end to end in a fully supervised fashion, 
developing features directly for physical targets. Here, we 
explore another possibility: that features learned by deep 
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neural networks trained for other tasks may nevertheless 
encode physically relevant properties that serve as the basis 
for physical inference.  
 

Methods 
To test this hypothesis, we fit linear classifiers of stability on 
the learned features of two model classes: a supervised neural 
network trained only to recognize object categories, and an 
unsupervised neural network trained only to reconstruct 
images of block towers (never with provision of the 
groundtruth stability). We compare these results to those of 
human observers to demonstrate that perceptual features are 
not only sufficient to mimic performance but may in fact 
serve as the foundation for human judgments of stability.  
 
Stimulus Set Adapting a technique specified by Zhang and 
colleagues (2016), we generated an image dataset of stacked 
blocks, all of the same size (1m3), with enough horizontal 
jitter in each block’s position that towers have a 50/50 chance 
of falling. We varied the number of blocks from 2-6. The 
groundtruth for whether a tower will fall can be determined 
by computing at each junction of blocks the mean position 
(centroid) of all the blocks above the junction and comparing 
it to the centroid of the block beneath. If the centroid of the 
blocks above extends beyond the edge of the block beneath 
(at any junction), the tower will fall. In one of two datasets 
we generated with this method (called ‘Perspective’), we 
allow some variance in the camera. In the other (called 
‘Direct’), we situate the camera directly in front of the blocks, 
with the camera focused at the tower’s center. 
 
Behavioral Tasks Human subjects (from Amazon 
Mechanical Turk) performed two behavioral tasks: in the 
first, a benchmark, subjects were shown a series of towers 
and given a two-choice forced alternative task, designating 
each tower as stable or unstable. Tower sizes varied across 
subjects, but each subject only rated one size. The second task 
was identical to the first, but for two additional constraints: 
each stimulus was presented for only 250 milliseconds before 
being covered by a mask (a wall of blocks), and subjects were 
given only 1.5 seconds to respond. This design was meant to 
induce in subjects their instinctive ‘gut’ response, which in 
other domains has been analogized as the human equivalent 
of a ‘feedforward’ processing pass (Elsayed & Co., 2018). 
 
Models & Modeling Tasks: For our supervised neural 
network, we used Resnet18 pretrained on ImageNet as a fixed 
feature extractor,  freezing all the layers of the network but 
the batch normalization layers – a technique that maintains 
the integrity of the features learned by the convolutional and 
nonlinear filters of the network, but accounts for vacillations 
in the statistics of the image set currently being processed 
(Ioffe & Szegedy, 2015). For our unsupervised neural 
network, we used a variational autoencoder with a latent 
space of 128 dimensions, trained on the full range of block 

tower sizes rendered at various perspectives using a mean 
squared error reconstruction loss and a generative adversarial 
loss function (Makhzani & Co., 2015) in place of the standard 
Küllback-Liebler divergence, allowing the model to ‘learn’ 
the variational prior (a Gaussian) imposed on it. Importantly, 
and in contrast to other approaches that attempt to disentangle 
certain properties in the latent space using techniques like 
minibatch discrimination (Kulkarni & Co., 2015), we leave 
the latent space of our autoencoder fully entangled.  
 
For both our supervised and unsupervised encoder models, 
we decode stability from features using a multilayer linear 
perceptron, trained with Adam optimization, and in the case 
of Resnet18 a cyclical learning rate deduced from search 
(Leslie, 2015). For any given size of tower, we held the 
process of feature extraction constant, but varied the process 
of linear decoding such that the classifier was always trained 
and tested on the same size of tower. Classifiers fit on both 
Resnet18 and the variational autoencoder were trained using 
features from 25,000 towers per tower size and tested on the 
benchmark towers of the same size rated by human subjects.  
 

Results 
Humans versus Resnet18 Features: Human performance 
was generally high for the full range of blocks in the range 
we tested (from 94% accuracy on 2 blocks to 79.8% accuracy 
on 6 blocks). The performance of the linear classifier trained 
on features from pretrained Resnet18 (henceforth ‘Resnet 
Head’) produced directly comparable performance (from 
92.3% accuracy on 2 blocks to 78.6% on 6 blocks; see Figure 
1A). A linear regression of performance on tower size 
unveiled a slight, but significant negative slope for both 
humans and Resnet Head (b = -0.023, p < 0.01 & b = -0.038, 
p < 0.001, respectively) – suggesting the difficulty of 
classifying increased with the size of the tower for both 
human and machine. 
 

To assess the degree to which humans and the feature 
classifiers agreed on which towers were stable and which 
were unstable, we compared the pattern of responses to each 
individual display. Human agreement was quantified as the 
mean of a correlation computed separately for each 
individual subject (against the average response of the other 
subjects). A similar agreement between humans and 
machines was computed by iteratively removing one subject 
from the pool and correlating the machine’s results with the 
average of the pool remaining. The results manifest a high 
degree of agreement between human and machine across the 
individual displays, with an average intersubject correlation 
of .726 and average human to machine correlation of .723, an 
insignificant difference. A graphical representation of these 
correlations (see Figure 1B) show the idiosyncrasies of 
comparison across individual subjects and individual models. 
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Variational Autoencoder Features: Overall performance 
was markedly lower for the linear classifier trained to decode 
stability from the features of the variational autoencoder. The 
linear classifier failed completely in the case of two blocks, 
scoring no greater than chance, and between 63.5% and 59% 
for the rest of the tower sizes. The failure of the classifier on 
this portion of the human benchmarks data, despite a 
relatively high validation score (80%) on a set of 1000 held-
out images of two block towers reveals the heightened 
susceptibility of these classifiers to even slight differences in 
the distribution of features in the training and testing image 
set, perturbations it seems were amplified by representational 
divergences in the latent space of the autoencoder.  
 
The lower performance of the classifier came as a surprise for 
an encoder model that seemingly had developed strong 
implicit representations of stability, as evidenced by 
interpolations in the model’s latent space that produced 
smooth generative samples in the transition from an unstable 

tower to perfectly stable tower – an ‘idealized’ tower the 
network had never directly seen (see figure 2).  
 
Inspired by these interpolations, we launched a set of 
exploratory analyses to determine whether or not we could 
close the gap between human subjects and the classifier 
trained on the features learned by the autoencoder.  
 
The first analysis was predicated on the following hypothesis: 
in order to interpolate smoothly between tower exemplars, a 
model must develop some representation of each block’s 
position in absolute space. When groundtruth stability can be 
linearly calculated from these positions (in a combination of 
averaging and thresholding operations), it’s possible that the 
failure of the classifier to detect stability is not necessarily 
due to a paucity of discriminant features in the encoder 
model, but to the instability of the classifier itself, as may 
have been the case for the aforementioned failure on the two 
block subset of the human benchmark data. To test this, we 

 

  
 

 

 
 

Figure 1 (A) & (C). Human and Machine Performance on the Block Towers Human Benchmarks Dataset. Error bars are 
95% confidence intervals for both humans & machines in (A) and bootstrapped confidence intervals for machines in (C). 
(B) & (D) Correlations between humans and machine across overall percent correct. This figure gives a sense for how 
well we might expect an individual classifier to correlate with human subjects given its accuracy. The green points are 

made with a random response generator pinned to the accuracy of the classifier, and the lines represent the bootstrapped 
confidence intervals on this point from many simulations. Notice that the discriminability between the random response 

generator and both human and machine subjects is best at low to intermediate ranges of performance. 
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decided to incorporate the autoencoder into a modified ideal 
observer analysis, asking: what is the maximal classification 
accuracy a classifier trained on this network’s features could 
achieve when asked to decode positions directly?  
 

To do this, we modified the accuracy metric of the linear 
classifier to include the groundtruth computation of stability 
based on block position and equipped the classifier itself with 
a least absolute deviations loss on the predicted versus actual 
positions of blocks in the image. What this produced, in 
effect, was an ideal observer model of a classifier that told us 
how accurate the classifier could be given the representations 
of block position embedded in the latent feature space. 
Performance in our idealized ‘position’ classifier exceeded 
the performance of the classifier trained exclusively to 
decode stability at all tower sizes, scoring between 78% 
correct and 62% correct across the range of tower sizes. This 
discrepancy suggests that while the information for decoding 
stability may be present in the latent space of our 
autoencoder, the classifier trained only with stability labels 
failed to converge on this solution. 

Time – Limited Humans versus Autoencoder Features: 
Human subjects limited to a ‘feedforward’ pass by time 
pressure (250 milliseconds worth of exposure to the stimulus 
and 1500 milliseconds of response time) still perform far 
above chance in the block towers task, scoring between 77% 
and 66% correct across the range of tower sizes. 
 
Noticing that this decrease put humans roughly in the same 
performance range as the classifier trained on features in the 
autoencoder’s latent space, we decided to test the 
correspondence of our time – limited human subjects to the 
performance of our classifier trained on the features of the 
autoencoder’s latent space (see Figure 1C). The same average 
correlation analysis we performed with the classifier trained 
on Resnet18’s features produced a notable correspondence 
between human and machine with some instances in which 
the machine correlated better with the average human subject 
than individual human subjects performing at the same level 
(see Figure 1D). The correspondence in this case may mean 
that human subjects limited by computational pressures may 
avail themselves of more specialized features (such as those 
learned by our autoencoder trained exclusively on block 
world) – but without further exploration, any such 
interpretation remains highly speculative.  

Discussion 
Our ease in navigating the physical world is a testament to 

a system that has learned to manage the inscrutability of 
latent physical structure, identifying reliable perceptual 
proxies to that structure even when that structure evades 
cognitive conceptualization.  For a brain limited by sugar 
intake and five (variably reliable) senses, statistical regularity 
is often the most easily available route to reliable inference – 
a reality that explains perhaps the relatively late invention of 
classical mechanics by an otherwise very inventive species.  

 
The success of our linear classifiers in decoding the 

stability of block towers from the features of supervised and 
unsupervised deep neural networks is not evidence that they 
have learned the same representations present in human 
perceptual systems: decades of cognitive science have shown 
those representations to be more rich, more flexible and more 
robust than the representations we have explored here. What 
the success of our linear classifiers does mean is that there 
exists some linear mapping between the purely perceptual 
representations learned by a deep neural network and the 
representations powering the inferences of human subjects in 
a task traditionally conceptualized as requiring a heavy dose 
of higher-order abstraction. While this work does not 
arbitrate on the capacity for such abstraction, it does suggest 
we may not always need it – and that statistical shortcuts via 
perceptual features may well trump fully fledged simulation 
in the pinch of computational pressure. All this to say, we 
may not always need physics to make physical inferences. 

 
Future work will attempt to further complete the 

cartography of correspondence between human and machine 
by pushing and plying how we learn the representations we 
do, and probing why, despite immense divergences in the 
material substrate on which these algorithms are instantiated, 
the correspondences persist. The autoencoder we have 
included here – though in many ways an undercomplete 
example precisely because of its highly constrained, synthetic 
input space –  is a nod to the necessity of rethinking how our 
perceptual systems are tuned, and what features they might 
develop in the process of the tuning. The more kaleidoscopic 
our representational palette, the more robust it is to the 
uncertainties and perturbations we invariably encounter, and 
the more conducive to a properly calibrated response. 
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Figure 2. Interpolations between an unstable tower and a 
perfectly stable tower in the latent space of a variational 
autoencoder never given stability labels. The image on the 
left was the only image not generated by the decoder.   
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