Confirmation Bias is explained by Descending Loops in the Cortical Hierarchy
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Abstract

In order to carry decision-making based on several pieces
of evidence, one must integrate information over time. An
optimal Bayesian observer would simply use Bayes’ rule
to combine the past knowledge with the new evidence.
In this work, we tackle malfunctioning of inference, mo-
tivated by biological considerations and the recurrent
structure of the brain. Allowing for loops of information
when excitation and inhibition are unbalanced, we de-
rive a functional Bayesian model of suboptimal inference,
where the likelihood is corrupted by the prior knowledge.
We show that, depending on the level of reverberation
of the prior information, this “circular inference” model
can explain cognitive biases often observed experimen-
tally as the recency effect, the primacy effect, and the
confirmation bias. The model is able to fit behavioural
data on a task where healthy subjects were injected low
doses of ketamine, a hallucinogenic drug thought to mod-
ify the E/I balance in favor of excitation. This work could
allow to relate the microscale anomalies (E/I imbalance),
the mesoscale anomalies (anomalies in frequency bands)
and the macroscale anomalies (behavioural suboptimal-
ity and cognitive biases) observed in the psychotic state
and under hallucinogenic drugs.
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Background

The "Bayesian brain” hypothesis has gained speed in the last
decade. Current Bayesian models do not only fit behaviour,
they become more and more interpretable biologically. The
brain is undoubtedly unable to carry perfect inference, and
that is why several approximate inference algorithms have
been proposed. These algorithms include variational infer-
ence, sampling, and (loopy) belief propagation.

These recent advances in the field of Bayesian modelling
are hugely beneficial to computational psychiatry. This new
field of research uses models describing healthy brains, and
potentially modifies these models in order to account for mal-
functioning behaviors. This approach is particularly promising
to explain the positive symptoms of schizophrenia (hallucina-
tions, delusions) or involving psychedelic drugs.
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Circular Inference is such a example, trying to explain in-
ference flaws in the psychotic state. It relates the amount of
malfunctioning to the level of imbalance between excitation
and inhibition in a non-healthy brain.

Here we present the first attempt to fit ketamine behavioural
data with the model. There are two reasons to think why Cir-
cular Inference is a good model for ketamine data. The first
one is that biologically, ketamine acts on NMDA receptors and
is thought to modify the excitation-inhibition ratio in favor of ex-
citation. The second reason is that behaviourally, it has been
reported that subjects have more confirmation bias under ke-
tamine.

Computational model
Initial idea

The initial idea of Circular Inference was introduced by Jardri
and Denéve (2013). They make the hypothesis that the brain
does inference by propagating probabilistic messages in the
cortical hierarchy (in practice by using the Belief Propaga-
tion algorithm, an approximate inference algorithm). They as-
sume additionally that unbalancing excitation and inhibition in
favor of excitation modifies the algorithm by introducing infor-
mation loops (the algorithmic equivalent of positive feedback
loops). The probabilistic message sent between two nodes of
the graphical model is corrupted by the message going in the
opposite direction (see Figure 1):

Mij = Fij( ) Myi+ oM j;)
k#j
where o = 0 in the perfect balance case (true belief propaga-
tion algorithm in binary graphical models), and o > 0 in the
unbalanced case. o can be seen as the level of impairment
of the inhibition (or amount of over-excitation in the network).
Prior loops are distinguished from sensory loops by using pa-
rameter o, (respectively o) if node i is under (resp. above) j
in the hierarchy.
The messages are probabilistic information brought to
nodes of the graphical model, such that

Bi=Y My
k

where B; is the log-odds of the binary variable x;. Mathemati-
cally B; = log(p(x; = 1)/p(x; = 0)).

(1)
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Figure 1: Concept of Circular Inference. Because probabilistic
messages are exchanged in both directions, the message M j;
may be partially reverberated. If i is below j in the hierarchy,
the new evidence (carried by nodes k down in the hierarchy)
is corrupted by the prior coming from node j. See Equation 1.

F;j is a sigmodal function with a parameter w;; € [0,1] rep-
resenting the strength of the connection between node i and

node j:
Model of categorization task
Here we deal with a particular problem: a visual categoriza-
tion task. In this case the generative model is modeled by a
graphical model with 3 binary nodes: the evidence node e at
the bottom, the representation node at the middle, and the cat-
egory at the top (also used by Lange, Chattoraj, Beck, Yates,
and Haefner (2019)).

Approximations (Taylor expansions at first order in o) lead
to the following non-linear equation describing the update of
the log-odds of the (binary) category variable:

wije"+(1 —W,‘j)

Fij(X) = F(x,wij) = log ((1 e
ij ij

By :F[prwp}+F[Bs+OCpF(F(Bp7Wp>7Ws)7Ws] (2

Link to other computational models
Bayes’ rule is a particular case of Equation 2, retrieved for
o, =0andwy=w, =L
Equation 2 can be linearized into a simpler equation:
Bl+l ~ kpo + k‘va (3)

where k, = [1+0a,(2w; — 1)?](2w,, — 1) controls the recency-
primacy bias. If prior loops (o) are too low then k, €
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[0,1] represents an integration leak. This explains the

recency effect often observed in experiments. Instead, if o,

is high enough then k, > 1 (amplification), allowing to ac-
count for the primacy effect sometimes observed in exper-
iments. Equation 3 is the model used by Baker, Konova,
Daw, and Horga (2019) to fit behavioural data of patients with
schizophrenia.

Equation 2 is also close to previous work by the lab (Jardri,
Duverne, Litvinova, & Deneve, 2017), except from it was de-
rived mathematically from the initial definition of Circular Infer-
ence (instead of reflecting its concept qualitatively).

In conclusion, the Circular Inference model proposed here
is a generalization of many functional models, but is motivated
biologically, and in particular interprets amplification of infor-
mation (prior loops o) as a shift of the E/I ratio.

The model accounts for confirmation bias

As explained in the previous paragraph, the model accounts
both for primacy and recency effects, depending on the val-
ues of parameters. The first term of Equation 2 represents
the natural leak of information, which could be interpreted as
finite working memory. This leak is present whatever the new
stimulus is. We thus interest ourselves to B, 1 — F(B),,w}),
seen as function f(B,,Bs) (see Figure 2). Having confirma-
tion bias means that f(B,, B;) is stronger if the likelihood goes
in the direction of the prior (B,B; > 0) than if the likelihood
contradicts the prior (B,B; < 0). We showed mathematically
that having prior loops is indeed necessary and sufficient for
confirmation bias.

Fitting the Circular Inference model to data
Behavioural data

18 healthy human subjects performed a task designed by
Valentin Wyart and run by Alexandre Salvador and Raphael
Gaillard. This task was a categorical task, variant of the
"weather task”. It involves accumulating probabilistic informa-
tion over 4, 8 or 12 independent samples, and reporting the
most probable category (see Figure 3). There were around
360 trials per session. Each subjects carried the task twice,
by being injected low-doses of ketamine or a placebo. The
design is cross-over, double blind.

Predictions

We predicted that the amount of prior loops (0,) was higher in
the ketamine session compared to the placebo session. There
are two reasons for that. The first one is that biologically,
ketamine acts on NMDA receptors and is thought to modify
the excitation-inhibition ratio in favor of excitation. The second
reason is that behaviourally, subjects have more confirmation
bias under ketamine, as reported in experiments.

Preliminary results

The model introduced above was fitted to behavioural data.
The optimisation was done using Adam, a first-order gradient-
based method, and gradients were computed through back-
propagation. The likelihood of the model was optimized using
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Figure 2: The model accounts for confirmation bias. Thanks to prior loops o, the update at sample t + 1 of the belief B (log-odds
of the C, the binary variable representing the category) is bigger if the prior B, and the likelihood By have the same sign (in the
example here, B, is positive). On the contrary, the updates have the same amplitude without prior loops (o, = 0).

——4/8/12 samples (cards) presented at 3 Hz—— A or B category?

na a o

\\\

sample 1 sample 2 sample n choice
B 2=-c//711vvas - C .,
2
B
c 0.5
3
E 1 Bso.o
=
4]
S -05
o
0 . . . : - ) -1.0
-90 -60 -30 0 30 60 90 -90 —60 -30 0 30 60 90
sample tilt from vertical (deg.) sample tilt from vertical (deg.)

Figure 3: Description of the task. Figures A and B come from Drugowitsch, Wyart, Devauchelle, and Koechlin (2016)

(A) Description of a trial. Each trial consists in a sequence of cues, after which participants take a decision based on them.
(B) Samples are drawn from a generative probability distribution favoring one of the two colors. At the end of the sequence,
subjects are asked to report from which distribution the samples are coming. (C) Probabilistic information brought by sensory
cues depending on their orientation. B; > 0 favors the pink distribution (category A).
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Figure 4: Model comparison with model evidences; a high
model evidence means that the corresponding model fits the
data well. Naive Bayes (2 parameters) is a special case of
Weigthed Bayes (4 parameters), which is itself a special case
of Circular Inference (5 parameters). We compare these three
models between themselves, and with the linear approxima-
tion of Circular Inference.

5 free parameters: w,, w), 0, and two parameters of the de-
cision criterion (softmax), B and a bias term.

We compared models of different complexity (see Figure 4).
Weighted Bayes (o, = 0) beats Naive Bayes (o, = 0, w;
w, = 1) with all 3 measures evaluating model performance.
Circular Inference beats Weighted Bayes only for one partic-
ipant, and is equivalent for the others, explaining that it only
slightly beats it. Circular Inference gets surprisingly beaten
by the equivalent linear model, not only using the penalized
scores but also the (non-penalized) model evidence. This sur-
prising result will be adressed in the future.

However, during the optimisation process, even though the
likelihood converged every time, the parameters o, and w),
kept increasing or decreasing, not oscillating. Because of that,
the fitting procedure was not reproducible. Knowing that under
ketamine, the working memory (equivalent of w,) is probably
impaired, it was impossible to fix w, among the sessions (for
a given subject). As a consequence, we could not compare
the amounts of prior loops (o) between the placebo and the
ketamine session. However, the fitted metaparameter k, was
reproducible, confirming that o, and w, could not be fitted
without fixing the other parameter, and that the subjects’ be-
haviour was close to linear. A solution would be to assess
during the task the working memory, in order to find w), and fit
only o,.

Overall, k,, is lower in the ketamine session, but it does not rule
out the prediction that o, is higher under ketamine, because
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the working memory could be a lot worse under ketamine, de-
creasing w),.

Conclusion

We derived a model from belief propagation algorithm in a bi-
nary graphical model, to which a change was made in order to
allow for reverberation of information. Many models proposed
in the literature can be seen as an linear approximation and/or
a particular case of the resulting non-linear model. Mathe-
matically, the model can only explain recency effects without
prior loops (o, = 0). On the contrary, allowing prior loops al-
lows to account for the recency effect, the primacy effect and
the confirmation bias observed experimentally. Importantly,
this addition of loops to the Weigthed Bayes model allowed
to explain better ketamine data. This work is a step toward
explaining some behavioural and perception malfunctions as
a consequence of uncompensated positive feedback because
of an imbalance between excitation and inhibition in the brain.
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