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Abstract
Expectations arise from past experience. How and
where in the brain this happens is not well un-
derstood. Here, we used fMRI-guided HD-tDCS in
combination with a new computational model and
EEG to investigate the role of right frontal eye fields
(rFEF) in the formation of expectations. Human
participants performed a free choice saccade task
before, during and after stimulation. Participants
formed persistent choice biases based on choice
history despite randomness in the task. Our model
– a distributed Ornstein-Uhlenbeck process that
was embedded in a reinforcement learning frame-
work – allowed for quantification of the build-up
of expectations underlying choice bias. Anodal
(cathodal) stimulation increased (decreased) the in-
fluence of trial history on expectation. This effect
was reversed post stimulation. Contrasting pre- vs
post-stimulation EEG shows that the power of alpha
and theta oscillations was dependent on the stimu-
lation polarity, the amount of time that has passed
since the previous choice, and the degree to which
expectation biased the subsequent choice. This
suggests that the neural activity giving rise to low
frequency oscillations in FEF plays an active role in
shaping how expectations form and persist.
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Introduction
Random sequences lead to the persistence of expec-
tations that are maladaptive in random experimental
settings (eg Jarvik, 1951). Persistent expectations
have been proposed to fall out of a mechanism that
sequentially optimizes learning to the statistics of the
world in the presence of computational cost (Yu and
Cohen, 2008). How expectations arise in the brain is
poorly understood.
Computational models of choice have suggested that
baseline information prior to the onset of a stimulus
is sequentially updated across choices to reflect how
expectations change with experience (Carpenter and
Williams, 1995; Yu and Cohen, 2008). Here, we
combine EEG and reinforcement learning of stochastic
baseline activity with a novel noninvasive method

(fMRI-guided High-definition transcranial direct current
stimulation [HD-tDCS]) to assess how FEF, a region of
the brain that has been implicated in sequential choice
effects (Soltani et al, 2013), influences the formation
and persistence of expectation.
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Figure 1: Free Choice Saccade Task and HD-tDCS
(A) Single trial schematic. Each trial began with a vari-
able delay period before the onset of two choice tar-
gets. Positive asynchrony values denote the rightward
target appearing prior to the left, and vice versa 0, +/-
16, 33, 66, 99ms. Participants were instructed to direct
a saccade to eithertarget as fast as possible without an-
ticipating.(B) Center out FEF localizer task. Saccades
were performed clockwise during gradient EPI, and the
resulting BOLD signal (C) was overlayed on a 3D recon-
struction of the neuroanatomy to guide HD-tDCS elec-
trode placement (D).

Results
Model-based analysis of Behaviour
In the free choice saccade task, (Fig 1A), the asyn-
chrony between targets and the fixation interval was
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randomized across trials. Thus, the optimal strategy for
fastest saccadic selection is to ignore any expectations
built from the outcome of previous trials. Despite
this, reaction times were sequentially-dependent, with
sequences of repetitive choices to the same direction
asymmetrically biasing early responses, and alterna-
tions biasing late responses (Fig 2C).

To model how the buildup of expectations influences
subsequent reaction times, we fixed sensory best-fitting
parameters from a bounded integration process, and
allowed a distributed OU process capturing choice ur-
gency (methods) to remain free when fitting to cumula-
tive reaction time distributions. Model fits show the rep-
etition of choice direction led to a progressive decrease
in early reaction times, while alternating choices led to a
progressive decrease in later reaction times. Fixing the
sensory parameters shows that the influence of choice
history on early and late reaction times can be quan-
titatively accounted for by the distributed OU process.
This led us to the conclusion that repeating choices in-
creased the rate of formation and the magnitude of ex-
pectation, while alternating choices reduced it.

Expectations are dissociably biased by
HD-tDCS

Following our model-based analysis, we assessed the
influence of stimulation on the sequential buildup of ex-
pectation by taking the KL divergence of early and an-
ticipatory reaction times (-250:150 ms) from the cumu-
lative distribution of anodal and cathodal stimulation,
sorted by the number of choice repetitions in a row.
Fig 3A shows a progressive decrease in early reaction
times (first half of distribution) following anodal stimula-
tion, as denoted by an increase in the median KL di-
vergence. Fig 3C shows that the sequential change is
negated in the post-stimulation period. Fig 3B shows
the opposite relationship during cathodal stimulation,
with a sequential increase in early repetition reaction
times compared to pre-stimulation that is reversed in the
post-stimulation period (Fig 3D).

Role of low-frequency oscillations in
persistent expectation

To contrast the effects of anodal and cathodal stimula-
tion in the brain, we recorded EEG at the center and
surround electrodes before and after stimulation. Time-
frequency subtractions prior to the repetition (Fig 4A)
and alternation (Fig 4B) reveal that pre-choice alpha
and theta oscillations were modulated in power relative
to both the condition (anodal vs cathodal), the time rela-
tive to fixation and target onset, and the previous choice.
Coupled with our behavioural analysis, this suggests a

Figure 2: Model Schematic and Behavioural Fits.
(A) The distributed Ornstein-Uhlenbeck model explicitly
encodes predictions of the asynchrony and timing
onset of the choice targets, which provides many
independent baseline values for a population readout
of a choice process. Simulations of the actor-critic
model are plotted to the right. (B) Model fits are
visualized by contrasting the KL divergence for
sequential choice repetitions and alternations. In
behaviour, progressive repetition leads to faster early
responses, while alternation leads to faster later
responses. Fixing the diffusion parameters and
allowing the OU process to remain as free parameters
qualitatively captures the data.

Figure 3: Sequential effects of early reaction times
by stimulation period KL divergence for cumulative
early reaction time distributions. Data was binned into
the number of previous choice repetitions Reaction
times in the first half (-200:150 ms) were used for
computing the KL divergence. A: Anodal vs Pre, B:
Post-Anodal vs Pre; C Cathodal vs Pre; D:
Post-Cathodal vs Pre
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role for low-frequency oscillations in FEF biasing the se-
quential buildup of persistent expectation.

Figure 4: Oscillatory Signatures of Persistent Ex-
pectation (A) Time-frequency subtraction between
post-anodal and post-cathodal for choice repetitions
(top) and choice alternations (bottom). TFRs were com-
puted relative to fixation onset (left) and target onset
(right), with the color map denoting relative frequency
power Z scores (cathodal higher in yellow, anodal higher
in blue .

Conclusions
Our work demonstrates a role for FEF in biasing how ex-
pectations form and persist within and across saccadic
choices. Future work will exploit the repeated sessions
by each participant to analyze test-retest reliability in re-
sponse to HD-tDCS, and assess individual heterogene-
ity through behaviour and single-subject anatomical cur-
rent reconstructions.
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Methods
Free Choice Task
Participants performed a free choice saccade task (Fig
1A), during which saccades were directed as fast as
possible (without anticipating) to either of two choice
targets presented asynchronously. The magnitude of
asynchrony and the length of the fixation interval were
randomized. The task was performed in blocks of 90
trials. 8 participants performed 10 sessions, each of
which contained 5 blocks of pre-stimulation behaviour,
5 blocks stimulation, and blocks post-stimulation.

fMRI-guided HD-tDCS
To target the site of stimulation, we localized the right
frontal eye field using a saccade task during functional
MRI. BOLD signals were collected using a gradient

echo planar imaging sequence, and preprocessed with
Brainvoyager QX 2.6. A T1-weighted anatomical scan
was also performed, and a 3D reconstruction was over-
layed with the functional data using Brainsight, which
guided electrode placement prior to each session.

A 4X1 center surround electrode configuration was
used to minimize current spread outside of rFEF. The
central electrode was placed directly over the place
on the scalp perpendicular to the cortical localization.
Stimulation was administered for 21 minutes (20 min-
utes on, 30 seconds ramp up/down) with a current
strength of 2mA. 8 Participants underwent 10 sessions
of stimulation, each alternating between anodal (hyper-
polarizing) and cathodal (depolarizing).

EEG Analysis
We computed the surface laplacian of the central elec-
trode relative to the four surround electrodes, and con-
trasted the time-frequency response of pre-and post-
stimulation periods relative to fixation and target onset.
EEG data was acquired from the same electrodes deliv-
ering the stimulation using a 16 channel EEG amplifier
(V-AMP, Brain Products) sampled at 2kHz, and band-
passed between 1-45 Hz. Time-frequency response
was computed using a wavelet decomposition (Tallon-
Baudry et al, 1997).

Reinforced Gated Accumulator
Our model is composed of three components: an
Ornstein-Uhlenbeck process representing the buildup of
choice urgency, a diffusion process representing sen-
sory integration, and an actor-critic RL module describ-
ing across-trial dynamics (Fig 2A). The diffusion pro-
cess is gated by the OU process. The model is dis-
tributed across many dimensions to analytically capture
the form of empirical reaction time distributions.

Distributed Ornstein-Uhlenbeck Model
We propose a continuous-time stochastic process to
describe the influence of dynamic baseline activity
on reaction times during the fixation interval. The
model describes saccadic choice as two processes: a
pre-target process that represents the growing urgency
to receive sensory information, and a subsequent
drift-diffusion that represents sensory integration. An
Ornstein-Uhlenbeck (OU) process is a simple stochas-
tic model for a process that reverts to a long-run mean.
A distributed OU model is composed of many individual
processes that are driven to a common equilibrium
acting as an order parameter (Haken, 1986)..

Let X1, X2, ...XK be a set of stochastic processes
which evolve in time as individual realizations of an
OU process, where Xi = x1, x2, .., xt, ..., xn Individual
realizations satisfy the stochastic differential equation
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dxt = θµ− xtdt+ σdWt (1)

Where θ is the drift rate, µ is the mean value the re-
alization reverts to. W is a standard Weiner process,
where

Wt+σ −Wt ∼ N (0, σ) (2)

The sample path for a single Ornstein-Uhlenbeck pro-
cess x1, x2, ..xt can be computed analyticaly using a
scaled time-transformed Weiner process (Doob, 1942).

xt = x0e
−θt + µ(1− e−θt) + σe−θt√

2θ
W 2θt
e − 1 (3)

We want to solve for the distribution of valuesX for all of
t. We assume that one independent stochastic process
x1, x2, ..xn operates under mean-reversion order pa-
rameters that represent the influence of choice history.
Here, the global stochastic properties θ, µ, and σ. act
as order parameters that can fully describe the evolu-
tion of the system under the mean-field approximation.
µ encodes a spatial prediction by setting the relative
threshold-baseline difference for subsequent bounded
integration, while θ encodes a temporal prediction by
setting how fast this spatial prediction reaches equilib-
rium. σ describes shared variance between the two pre-
dictions.

Bounded Integration
We assume that each choice process evolves with
equation 3 under mean-field Gaussian initial conditions
to provide a threshold-baseline difference. Upon target
presentation, we now have many bounded integration
processes integrating sensory information with average
rate r, and a threshold-baseline difference unique to the
initial condition of each choice process. We describe
a population readout of all choice processes encoding
this information as the sum of an extended integration
model (Nakahara et al, 2006)

PTD(t) =

K∑
i=1

1

t2
1√

2πµr/si
exp

[
(− 1

2(σr

si
)2
)(
1

t
− µr
si

2
)

]
(4)

where s(i) is the threshold-baseline difference for
process i, µ(r) is the average rate of sensory inte-
gration, and σ(r) is the standard deviation of sensory
integration. PT (j) is the reaction time probability at
time t. Thus, many processes responsive to visual in-
formation at the position of the target integrate sensory
information with a constant average rate (subject to
fluctuations) are predicated on the initial conditions of
its baseline at the time of target onset.

Actor-Critic
We simulate an actor-critic framework, in which expec-
tation of choice direction and timing are embedded in
the OU urgency signal and updated across trials. Fol-
lowing each choice, a critic estimating the elapsed time
of choice θ̂ and choice µ̂ updates the OU process Si
(actor) based on the temporal difference error (Sutton
and Barto, 1998) from the previous state Si−1, and the
magnitude of asynchrony between the two targets R.

Model-Fitting and RT Analysis
Model-fitting was performed by sampling from the re-
sulting distribution of equation 6, and minimizing an
Akaike Information Criterion over cumulative reaction
time distributions using a Bayesian adaptive direct
search algorithm (Acerbi and Ma, 2018). Reaction time
analysis for visualization and stimulation comparison
was computed as the Kullback-Leibler divergence of
binned data.
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