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Abstract: 

The amount of generalization that organisms show from 

learned associations to new stimuli can often be 

explained by perceptual dissimilarity, i.e. distance in 

psychological space. However, this doesn’t seem to be 

true using emotionally relevant stimuli like fearful faces. 

We propose that this can be understood in a Bayesian 

framework in which the organism infers a mapping of 

psychological space onto outcome probabilities by 

integrating prior assumptions with new information. This 

approach allows for the incorporation of domain specific 

prior knowledge. We employed face stimuli that differ on 

one fear relevant (emotional expression) and one fear 

irrelevant (identity) dimension in combination with 

Pavlovian conditioning to investigate generalization at 

several time points. We can show that generalization is 

skewed towards the fear relevant pole in the beginning, 

but gravitates towards the actually reinforced stimulus 

over time. Our Bayesian model that comprises a prior 

belief state about the structure of the predictive 

relationship between the psychological space and an 

aversive outcome can reproduce the experimental data. 
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Generalization describes the cognitive capacity of 

organisms to translate knowledge from known 

situations to new ones. This ability is considered an 

evolutionary advantage because it allows for a more 

efficient interaction with the environment.  

 

Generative models of generalization 

 

It is generally accepted that similarity plays a decisive 

role in generalization along perceptual dimensions. In 

conditioning paradigms one finds stronger 

generalization from learned associations to stimuli that 

are more similar to the CS+ (Onat & Büchel, 2015). 

Most theoretical approaches conceptualize similarity as 

distances in a psychological space in which more 

similar stimuli are closer to each other. Shepard (1987) 

introduced the idea of a consequential region, which is 

a part of psychological space that predicts a 

consequence. While a seminal contribution to models 

of generalization, Shepard’s approach is only 

applicable to learning from one single consequential 

observation. Tenenbaum & Griffiths (2001) extended 

this idea in a rational analysis of generalization and 

proposed a Bayesian model in which the prior 

knowledge is captured in a probability distribution over 

all potential consequential regions. Other work has 

used and refined this approach but some issues remain. 

E.g. that the model can’t be applied to probabilistic 

outcome structures since consequential regions are 

deterministically linking the psychological space to an 

outcome. Additionally, the neural representation of a 

space of discrete hypotheses seems biologically 

implausible. We propose an alternative formulation that 

deals with these issues. 

 

Our Modeling Approach 

 

Associative Map As an alternative to consequential 

regions, we propose the idea of associative maps which 

map the psychological space onto outcome 

probabilities for any given consequence. Associative 

maps capture the idea that different regions in 

psychological space can lead to the same outcome with 

different probabilities. E.g. a very moldy bread will lead 

to gastrointestinal issues with a higher probability than 

an only slightly moldy piece of bread. An associative 

map in N dimensions for an outcome is characterized 

by the following parameters: 

 

1.  - 1xN coordinate vector of the center of the 

associative map 
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2.  – 1xN vector that defines weights for 

exponential decay of outcome probability in 

every dimension 

3. φ– the probability of the outcome at the 

midpoint 

 

When constraining every dimension in psychological 

space to the range of [0,1] we can parameterize the 

prior probability distributions p(Η) on the parameters of 

the model like this: 

 


𝑖
 ~ 𝐵𝑒𝑡𝑎(𝑎𝑚,𝑖 . 𝑏𝑚,𝑖) 

𝑖 ~ 𝐺𝑎𝑚𝑚𝑎(𝑠𝑖 , 𝑝𝑖) 
𝜑 ~ 𝐵𝑒𝑡𝑎(𝑎𝑠, 𝑏𝑠) 

  

This formulation allows for a flexible incorporation of 

prior knowledge. E.g. we can capture the impact of fear 

relevant dimensions that lead to skewed generalization 

gradients like emotional expression (Dunsmoor, Mitroff, 

& LaBar, 2009). The prior distributions on  comprise 

domain knowledge whereas the priors on  cover 

general assumptions about the strength of probability 

decay in any dimension. E.g. after experiencing a 

threatening situation involving a lion, it is adaptive to 

generalize to mountain lions, but not to domestic cats. 

 

Bayesian inference Every point in parameter space 

defines an associative map. The inferred outcome 

probability of generalization depends on the weighted 

distance d from the inferred midpoint . For a stimulus 

at the position σ, the weighted distance in N dimensions 

is given by 

𝑑(𝜎) = √∑  (𝑖 ∗ (𝜇𝑖 − 𝜎𝑖))
2𝑁

𝑖=1 . 

 

The outcome probability p for this stimulus is then given 

by 

𝑝(𝜎) = exp( −𝑑(𝜎)) ∗ 𝜑. 

 

The likelihood of an observation consisting of a stimulus 

and an outcome given the prior distributions is 

 

𝑝(𝜎, 𝑜𝑢𝑡 | 𝐻) = (𝑝(𝜎))𝑜𝑢𝑡 ∗ (1 − 𝑝(𝜎))1−𝑜𝑢𝑡 

 

where out is 1 for consequential and 0 for non-

consequential observations. Consequently, the 

likelihood of a set of observations consisting of a 

sequence of N stimuli Σ and respective outcomes Ο is 

defined as 
 

𝑝(Σ, Ο | H) =  ∏ 𝑝(Σ𝑖 , Ο𝑖  | H) 

𝑛

𝑖=1

 

The posterior probability of model parameters is then 

proportional to the product of the prior probability and 

the likelihood according to Bayes’ rule: 

 

𝑝(H | Σ, Ο) ∝ 𝑝(Σ, Ο | H) ∗  𝑝(H) 

 

Methods 

Stimulus space 

To test the model’s ability to distinguish purely 

perceptual and informed generalization we constructed 

a stimulus space that consists of one neutral and one 

fear relevant dimension (emotional expression). For this 

we designed computer generated faces on a 5 x 5 grid 

by creating different morphing steps between two 

identities and then adding different levels of a happy or 

an angry emotional expression. Figure 1 shows the 

angry version. In both cases, the stimulus in the center 

(indicated by black circle) is the CS+, i.e. it is 

probabilistically reinforced with an electric shock.  

 

Figure 1: Stimulus space, angry version. CS+ 

indicated by black circle. 

Conditioning paradigm 

In this study, we use a conditioning paradigm that 

consists of 20 microblocks that each consist of all 25 

stimuli. The CS+ is shown twice and reinforced once 

per microblock with a small electric shock. Microblocks 

are arranged in mesoblocks of five microblocks each. 

We collect shock expectation ratings before 

conditioning and after every mesoblock, i.e. five in total. 
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Results 

Model predictions 

In line with Dunsmoor et al. (2009) we assume that prior 

knowledge on the fear relevance of dimensions has a 

decisive impact. E.g. angry faces are considered more 

likely to predict a negative outcome then neutral ones 

while happy faces might be considered a safety signal 

a priori. To capture this in the model, we assume an 

informed prior on the midpoint parameter for the 

respective dimension. This results in a generalization 

gradient that is heavily skewed in the emotional 

dimension. Given these assumptions, the observations 

become more and more unlikely with increased number 

of trials. Thus, we expect this gradient to become 

increasingly specific and to gravitate towards the CS+ 

over time. The visualized predictions for these 

assumptions about both stimulus sets can be found in 

figure 2.  

 

Figure 2: Model predictions for shock expectation 

ratings using the (A) angry and (B) happy face stimuli. 

 

Ratings 

The averaged shock expectancy ratings over subjects 

for the different ratings can be seen in figure 3. 

 

Figure 3: Averaged shock expectation ratings at 

different points in time for the (A) angry and (B) happy 

face stimuli. 

 

Angry face stimuli As expected, subjects report higher 

shock expectation for angrier looking faces without an 

impact of identity before conditioning. With increasing 

amounts of information this prior assumption is 

overwritten due to the increasingly smaller likelihood of 

the observations under these assumptions. 

Happy face stimuli Subjects initially report lower shock 

expectation for happy than neutral faces. From the 

second rating onwards, the generalization gradient is 

more or less centered on the CS+ and becomes more 

specific over time. 

 

Discussion 

The results from the angry face condition are well in line 

with our expectation. The shock expectation ratings are 

compatible with the idea of Bayesian integration of the 

assumption that angry faces are more likely to be 

predictive of an aversive outcome with counterfactual 

evidence from the conditioning. Before observing data 

the gradient relies entirely on prior knowledge. Since 

the observations become increasingly unlikely with 

more trials, the posterior distribution in parameter space 

shifts towards an associative map that is centered on 

the CS+. 

Results from the happy condition show a different 

picture. Again, in the beginning there is a gradient in the 

expected direction. However, since it’s not quite as 

strong, the prior on the midpoint parameter is quickly 

overpowered by the observations’ likelihood. The 

generalization gradient becomes increasingly steep as 

the observations are more likely under this assumption. 

In summary, the model clearly captures the 

characteristics of shock expectancy ratings in the angry 

condition and is in line with the results from the happy 

condition.   
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