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Abstract
Physiological constraints define allowed configurations of
synaptic weights for neural circuits. How this affects circuit
function remains little understood. We examine the hypothesis
that neural circuits may be structured to make constraints flexi-
ble: to allow many configurations of synaptic weights. The size
of these allowed weight spaces depends on the number of in-
puts to a neuron: its connectivity degree. We predict degree
distributions that optimize simple constraints on a neuron’s to-
tal synaptic weight. We also find the degrees of connectivity
that maximize the number of allowed synaptic weight config-
urations. To test these predictions, we examine reconstruc-
tions of the mushroom bodies from the first instar larva and
the adult Drosophila melanogaster. Overall, flexibility under a
homeostatically fixed total synaptic weight describes Kenyon
cell connectivity better than other models, suggesting a prin-
ciple shaping the apparently random structure of Kenyon cell
wiring.
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Introduction
Learning in neural networks is the process of finding con-
nection strengths that minimize a cost function. In biological
neural networks, that cost function is often unknown. Neu-
ronal connectivity is also, however, homeostatically regulated
and constrained by physiological limits. The total strength of
synaptic connections between two neurons is limited by the
amount of receptor and neurotransmitter available and the
size of the synapse (Kasai, Matsuzaki, Noguchi, Yasumatsu,
& Nakahara, 2003). Pyramidal neurons of the cortex and
hippocampus undergo synaptic scaling, regulating their total
synaptic input strengths (Turrigiano, 2008).

Constraints define spaces of allowed synaptic weight con-
figuration. If the constraint is tight, it solution set is small (Fig.
1a); if a constraint is loose its solution space is large. A small
solution set has less potential overlap with other subspaces of
synaptic weights, potentially restricting the ability of that neu-
ron to learn a computation. Loosening the constraint, how-
ever, requires using more physiological resources. We ex-
amine how circuits can be structured to make a constraint’s
solution set large without changing the available resources.

We begin by defining the different constraints on a neuron’s
total synaptic weight we consider and exploring the geome-
try of their solution spaces. In each case, we characterize
the maximally flexible connectivity configurations: those that
maximize the size of the constraint’s solution set. We then
leverage them to define maximum entropy models for neural
connectivity. We derive the Laplace approximations for these

models’ posterior likelihoods. Finally, we apply these mod-
els to recently characterized connectomes of a learning and
memory center of the Drosophila melanogaster (Eichler et al.,
2017; Takemura et al., 2017), asking which constraints best
explain the degree distributions of neurons at different devel-
opmental stages.

Measuring constraint flexibility

We begin with a simple example where a neuron has N units
of synaptic weight, of size ∆J, available. These could corre-
spond, for example, to individual receptors or vesicles. It can
assign these synaptic weight units to its K partners (presy-
naptic partners as in Fig. 1b for receptors, or postsynaptic
partners for vesicles). We can count how many ways this con-
straint can be satisfied. If not all synaptic weight units have to
be assigned, we can add one “partner” corresponding the the
unused synaptic weight pool. For N = 4 and two connections,
there are six possible configurations. With three connections,
there are four possible configurations. Thus with the constraint
of N = 4, two connections are more flexible than three since
there are more ways to satisfy the constraint. Since the con-
straint treats all synaptic partners symmetrically, the number
of possible configurations is given by the binomial coefficient
“N choose K”. For different numbers of synaptic weight units
N, there are different maximally flexible configurations K (Fig.
1c).

Geometry of constraint spaces

We consider a simple model of synaptic interactions where a
neuron has K synaptic partners and the total strength of pro-
jection i is Ji. Synaptic weights can be made up of many small
units of strength, corresponding to (for example) individual re-
ceptors or vesicles. In this case, it is reasonable to model in-
dividual synaptic weights as continuous variables. We can vi-
sualize these weights as a vector in the K-dimensional synap-
tic weight space; K is the synaptic degree. These partners
could be either all presynaptic, or all postsynaptic. A partic-
ular configuration of synaptic weights occupies a point in the
K-dimensional synaptic weight space. A constraint specifies
a space of allowed synaptic weights. We will examine the hy-
pothesis that synaptic connectivity is structured to make these
spaces large: to make the constraint flexible.

Flexibility under bounded net synaptic weight

We begin by considering an upper bound on the net synaptic
weight, so that

K

∑
i=1

Ji ≤ K pJ̄ (1)
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Figure 1: Neural constraints on
synaptic weights. (a) The solu-
tion spaces for computational tasks
are subspaces of the synaptic weight
space. Constraints also define sub-
spaces of allowed synaptic weights. A
tight constraint defines a small sub-
space. (b) A neuron that has N = 4
units of synaptic weight (here, recep-
tors) to distribute amongst two synap-
tic partners and a pool of unused
synaptic weight. (c) Number of possi-
ble connectivity configurations for dif-
ferent values of K and N (given by the
binomial coefficient). (d) A bounded
net synaptic weight with K inputs de-
fines the volume under a K − 1 sim-
plex. (e) Volume of the K− 1 simplex
vs K. (f) Optimal degree vs maximal
net synaptic weight at the optimal de-
gree. (g-i) Same as (d-f), but for a
fixed net synaptic weight.

This bound could be interpreted multiple ways, for example
as a presynaptic limit due to the number of vesicles currently
available before more are manufactured or a postsynaptic limit
due to the amount of dendritic tree available for synaptic in-
puts. The scaling of the summed synaptic weight as K p cor-
responds to scaling the individual synaptic weights as K p−1.
If every synaptic weight has an order 1/K strength, the sum
of the synaptic weights would be order 1 and p = 0. If every
synaptic weight has an order 1 strength, the summed weight is
order K and p= 1. If synaptic weights have balanced (1/

√
K)

scaling, then the summed weight would have p = 1/2.

With K synaptic partners, the constraint (1) defines a vol-
ume in K dimensions. For two synaptic partners, this is the
portion of the plane bounded by the axes and a line that
stretches between them (Fig. 1d). In general, for K synaptic
partners the synaptic weights live in the volume under a K−1
dimensional simplex in K-dimensional synaptic weight space.
We call the synaptic degree that maximizes the volume under
the simplex the optimal degree, K∗ (Fig. 1e). We computed
this optimal degree. It is approximately linearly related to the
total synaptic weight:

(K∗)pJ̄ =

(
K∗+

1
2

)
exp(−p)+O (1/K∗) (2)

We can see from Eq. 2 that if p = 1, we obtain the condition
J̄ = 1/e (to leading order). So if p= 1 and J̄ = 1/e, the surface
area is approximately independent of K. If p = 1 and J̄ < 1/e,
the volume decreases monotonically and vice versa.

Flexibility under fixed net synaptic weights

We next consider a simple model of homeostatic synaptic
scaling:

K

∑
j=1

J j = K pJ̄ (3)

where the net synaptic weight is fixed at K pJ̄. The fixed net
weight constraint defines the same simplices as the bounded
net weight, but requires synaptic weights to live on their sur-
faces instead of the volumes under them. The size of the
space of allowed weights under Eq. 3 is given by the surface
area of the K−1 simplex, A. The surface area of the simplex
increases with the net excitatory weight, but for J̄ ≥ 1 it has a
maximum at positive K (Fig. 1h). The optimal degrees obey:

(K∗)pJ̄ = (K∗+ p−1)exp(−p)+O (1/K∗) (4)

revealing an approximately linear relationship, similar to the
constraint on the maximum possible synaptic weight (Eq. 2).
As for the bounded net weight, we can see from Eq. 4 that
if p = 1, we obtain the condition J̄ = 1/e (to leading order).
So if p = 1 and J̄ = 1/e, the surface area is approximately
independent of K. If p = 1 and J̄ < 1/e, the area decreases
monotonically and vice versa.

Flexible connectivity in Drosophila mushroom
bodies

Testing these predictions requires joint measurements of neu-
rons’ total synaptic weight and number of synaptic partners.
For this purpose we turned to dense electron micrographic
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(EM) reconstructions with synaptic resolution. Dense EM re-
constructions have been published for the mushroom bodies
of the first instar larval D. melanogaster (Eichler et al., 2017)
and the alpha lobe of the adult (Takemura et al., 2017). The re-
construction of the first instar larva includes all pre- and post-
synaptic partners of the Kenyon cells (KCs). The adult’s alpha
lobe is defined by axons of KCs; that reconstruction does not
include inputs onto the alpha lobe KCs’ dendrites.

Since the fly EM data includes synapse counts but not
synaptic weights, we assumed that the number of synapses,
S̄, is proportional to the physiologically constrained synaptic
weight:

K pJ̄ = αS̄ (5)

where α is the constant relating the synapse count and the
physiological weight. This assumes that the scaling with K p

arises from something other than the number of synapses. If it
did arise from the number of synapses directly, then this would
correspond to taking p = 0.

We began by examining neurons’ input connectivity. Across
all postsynaptic neurons in the first instar larval mushroom
body, we saw an approximately linear relation between K and
S̄ (r(K, S̄) = 0.82). We next examined whether this relation-
ship depended on the postsynaptic cell type. We first exam-
ined the larval KCs, which had r(K, S̄) = 0.92 (Fig. 2a). The
youngest KCs have no claws, and the oldest a single claw.
For young (clawless) KCs, we saw a near perfect linear rela-
tion (Fig. 2a black; r(K, S̄) = 0.99). Clawed KCs were not ex-
plained as well by our theory (Fig. 2a; single-claw KCs in blue,
r(K, S̄) = 0.67, and multi-claw KCs in orange, r(K, S̄) = 0.77).

In the alpha lobe of the adult mushroom body, we found a
similarly linear relation between K and S̄ to the larval mush-
room body: r(K, S̄) = 0.82 across all postsynaptic cells. For
all KCs we found r(K, S̄) = 0.96. The KCs innervating the al-
pha prime lobe best matched our prediction (Fig. 2c black,
r(K, S̄) = 0.99). The KCs innervating the main alpha lobe are
classified by the locations of their axons: posterior (Fig. 2c
blue, r(K, S̄) = 0.69), core (Fig. 2c orange, r(K, S̄) = 0.76),
and surface (Fig, 2c green, r(K, S̄) = 0.74). We found similar
results for KC output connectivity (Fig. 2c, d).

Degree distributions under connectivity constraints

We next examined the hypothesis that neural degree distri-
butions under constraints reflect the size of those constraints’
solution spaces. These are, in a certain sense, maximum en-
tropy degree distributions. For given K, the maximum entropy
distribution on the synaptic weight configurations J under a
constraint is the uniform distribution over its solution space,
SK . For the fixed net weight (Eq. 3), for example, SK is the
surface of the (K − 1) regular simplex with vertices at J̄K p

(Fig. 1g). For K from 1 to some finite maximum Kmax, the
maximum entropy distribution for synaptic weight configura-
tions J is likewise the uniform distribution over the union of
S1, . . . ,SK (if there is only one way to have K partners). Un-
der this maximum entropy distribution for synaptic weight con-
figurations, the likelihood of selecting a configuration with K
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Figure 2: Relation between number of synaptic partners
and synapse counts in D. melanogaster Kenyon cells. (a)
Inputs to Kenyon cells (KCs) of the first instar larva. (b) Out-
puts of the first instar KCs. (c) Inputs to adult KCs in the α

lobe. (d) Outputs of adult KCs in the α lobe.

inputs is proportional to the size of the solution space at that
K. These provide predictions for neural degree distributions,
conditioned on each neuron’s total synaptic weight:

p(K|J̄, p) ∝ |SK | (6)

We computed the Laplace approximation for the posterior
odds of the model corresponding to each of the constraints
discussed above, marginalizing out the scale factors α relat-
ing the anatomical measurements to the net synaptic weights.
We also examined a simple random wiring model where
pB(K|K > 0) ∼ Binomial(N,q). As for the other models, we
found the Laplace approximation for the zero-truncated bino-
mial model and computed the posterior odds by marginalizing
out the connection probability q and used anatomical mea-
surements of the number of potential partners, N.

In the first instar larval Drosophila, the model of a fixed
net weight predicted the connectivity of immature (young and
multi-claw) KCs best, while single-claw KCs were better de-
scribed by the binomial model (Fig. 3b, c). In the adult, all KC
types were best described by the fixed net weight model (Fig.
3d-f). We found similar results for KC outputs. Together, these
results suggest that immature KC connectivity is governed by
a homeostatically constrained net synaptic weight, while ma-
ture KC degree distributions are better described by binomial
wiring.

Discussion
In simple neural network models, constraints define a space of
possible synaptic weights (the “constraint space”; Fig. 1a gray
regions), while the synaptic weights that perform a particular
computation define another space (the “computation space”;
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Figure 3: Kenyon cell input degree
distributions. (a) Distribution of num-
ber of presynaptic partners for larval
KCs. Shaded histograms: empirical
distribution. Solid lines: the marginal
simplex area distribution at the maxi-
mum likelihood value of α, after inte-
grating out the number of synapses S̄
against its empirical distribution. Dot-
ted lines: the maximum likelihood bi-
nomial distribution using anatomical
estimates for the potential partners.
(b) Lower bound for the log poste-
rior odds ratio for the fixed net weight
and binomial wiring models. Positive
numbers favor the fixed weight model.
(c) Lower bound for the log posterior
odds ratio for the fixed net weight and
bounded net weight models; positive
numbers favor the fixed weight model.
(d-f) Same as (a-c) but for adult alpha
lobe KC axonal inputs.

Fig. 1a colored regions). The intersection of the constraint
and computation spaces defines the allowed synaptic weights
(the “solution space”). The size of the solution space is then
bounded by the size of the constraint space and the size of
the computation space. A large solution space could be ben-
eficial to maintain performance if synaptic weights fluctuate, or
to enable fast learning. While the computation space is circuit-
dependent and may change with experience and environment,
the constraint space reflects the underlying neurophysiology.
Maximizing its size may prevent the constraints from inter-
fering with task-specific learning. We examined how flexibil-
ity under constraints can shape connectivity. We focused on
constraints on summed synaptic weights, inspired by home-
ostatic regulation of total synaptic weights (Turrigiano, 2008)
and resource limits (Kasai et al., 2003). In the models dis-
cussed here, metabolic constraints or wiring constraints could
be thought of as fixing the total available synaptic weight (the
parameters J̄ and W̄ ). We elucidated the optimally flexible
numbers of synaptic partners for a neuron and how these de-
pended on the scaling of synaptic weights, and derived the de-
gree distributions that maximize the entropy of synaptic weight
configurations under these constraints.

We tested these predictions in larval Drosophila mush-
room bodies, using a complete wiring diagram for the larval
Kenyon cells (KCs) (Eichler et al., 2017) and a reconstruc-
tion of axonal connectivity in the adult mushroom body alpha
lobe (Takemura et al., 2017). Random wiring of KCs has been
discussed as a mechanism to facilitate associative learning in
mushroom bodies, focusing on apparent lack of structure in
glomerular projections to KCs. This notion of random wiring
begs the question: what principle governs the distribution of

that random process? We examined a hypothesis for that
principle: flexibility under constraints. We found that immature
KCs’ degree distributions are best predicted by a homeostat-
ically fixed total synaptic weight, while the most mature KCs
best match a binomial wiring model.
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