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Abstract
The selection of fixation locations during natural scene
viewing depends in large part on image-dependent and
observer-dependent factors. However, eye movement
data from different images, viewers, and experimental
designs also consistently contain systematic tendencies
such as pronounced saccade angle distributions, return
saccade statistics, and dependencies of these measures
on fixation duration. When modelling complete human
scan paths during extended natural image viewing these
systematic tendencies are critical. The SceneWalk model
(Engbert et al., 2015) incorporates image-dependent in-
formation through saliency maps and uses attentional
processing and inhibitory tagging mechanisms to dynam-
ically generate scan paths. Currently, scan paths sim-
ulated with this approach only partially reproduce ob-
served systematic tendencies. Here we propose adding
several neurally-inspired mechanisms to the model to im-
prove performance: pre-saccadic and post-saccadic at-
tentional shifts as well as facilitation of return mecha-
nisms. These mechanisms are well-established both in
experiments and neurocognitive theories of vision. We
find that this extension improves the model to generate
scan paths which are in qualitative agreement with empir-
ical data. As the model is firmly theory-based, all param-
eters are biologically interpretable and thus permit evalu-
ations of theoretical predictions of behavior. We also dis-
cuss a fully Bayesian framework using adaptive Markov
Chain Monte Carlo methods.
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Background
The human visual system depends crucially on the ability to
move the eyes over a scene. As only a small central region
of the visual field, the fovea, receives detailed high resolution
input, humans scan their visual environment in a series of fast
jumps, saccades, and periods of relative motionlessness, fix-
ations. The sequence of fixation locations chosen as gaze
postions is subject of extensive research, as it permits insight

into the theories of visuomotor control and their impact on vi-
sual perception.

Eye movements are guided by a variety of different mech-
anisms. Firstly, the image itself contains regions which are
inherently more informative than others. For example, objects
attract fixations (Nuthmann & Henderson, 2010). This finding
and other observations have inspired a class of models which
use saliency maps to predict which regions in the image are
particularly interesting and therefore likely to be fixated (e.g.
Itti, Koch, & Niebur, 1998; Kümmerer, Wallis, & Bethge, 2016).
The second category of mechanisms are observer-dependent
top-down effects, stemming from task and motivation as well
as individual differences (de Haas, Iakovidis, Schwarzkopf,
& Gegenfurtner, 2019). Thirdly, there exists a category of
mechanisms which is stable over both observers and images
(Tatler, Vincent, et al., 2008). Examples of these are the cen-
tral fixation bias, the distribution of inter-saccadic angles and
dependencies of saccade length and fixation duration.

SceneWalk

The SceneWalk Model (Schütt et al., 2017; Engbert, Truken-
brod, Barthelme, & Wichmann, 2015) uses attentional mecha-
nisms coupled with inhibitory tagging to dynamically generate
scan paths. Both streams are motivated by well-documented
findings from the field of visual perception research. Attention
is guided by image-dependent information and the foveated
nature of the input (Schütt et al., 2017; Engbert et al., 2015).
Inihibitory tagging of previously fixated regions promotes im-
age exploration (Mirpour, Bolandnazar, & Bisley, 2019).

In the model, the two streams exist as independent 2D ac-
tivation maps which evolve over time and are later combined
to form a target map from which fixations are selected proba-
bilistically. We compute a Gaussian GA/F centered around the
current fixation position for each stream (A = attention map,
F = fixation map/inhibitory tagging). Both streams are imple-
mented on an L×L lattice and evolve via coupled differential
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equations, i.e.,

dAi j(t)
dt

= −ωAAi j(t)+ωA
Si j ·GA(xi,y j;x f ,y f )

∑kl Skl ·GA(xk,yl ;x f ,y f )
(1)

dFi j(t)
dt

= −ωF Fi j(t)+ωF
GF(xi,y j;x f ,y f )

∑kl GF(xk,yl ;x f ,y f )
. (2)

Si j is a saliency map of the image, for which we can use a
map generated by another model or, in this case, the empirical
fixation density on the image.

The two pathways are each shaped by an exponent λ or
γ, respectively. Then we subtract the weighted (CF ) inhibition
path from the attention path.

ui j(t) =
(Ai j(t))

λ

∑kl (Akl(t))
λ
−CF

(Fi j(t))
γ

∑kl (Fkl(t))
γ (3)

As this operation can cause negative activation, in the next
step we take only the positive component of the map,

u∗(u) =

{
u, if u > 0
0, otherwise

(4)

and finally add noise (ζ).

π(i, j) = (1−ζ)
u∗i j

∑kl u∗kl
+(ζ)

1
∑kl 1

(5)

As the SceneWalk model implements concrete theory-
based mechanisms, the parameters of the model have clear
biological interpretations.

The Challenge: Systematic Tendencies
The performance of a scan path model can be quantified
by the likelihood of empirical data given the model. In our
model, the target map π(i, j) for fixation selection can be
used to directly read out the fixation likelihood for an upcoming
experimentally-observed fixation (Schütt et al., 2017). In ad-
dition to likelihood-based inference, however, it is important to
evaluate how well the model-generated data compare to the
experimental data with respect to the empirically observed ef-
fects.

Fixation behavior produced by the SceneWalk model al-
ready resembles empirical scan paths on several important
metrics such as the saccade amplitude distributions (see Fig.
1, top) or more complicated statistics like the pair correlation
function of fixation locations (Engbert et al., 2015). Other sys-
tematic tendencies, however, are currently not reproduced by
the model.

An example of an important statistic not reproduced by the
SceneWalk model is the angle distribution of subsequent sac-
cades (see Fig 1, middle). The characteristic ”W”-shape of
the empirical data shows that saccades are more likely to ei-
ther continue in the same direction as the previous saccade
or return in the direction of origin than to continue in any other
direction. Not surprisingly, neither the SceneWalk model nor
density sampling or homogeneous point processes capture

this dynamic of saccades. The same is true of the relation-
ship between fixation duration and change in saccade direc-
tion (Fig. 1, bottom).

Thus, these tendencies are caused by mechanisms present
in the visual system, but not implemented in previous ver-
sions of our model. Adding new mechanisms to the model
can significantly improve the agreement between simulated
and experimental data, as shown by the successful addition of
a Central Fixation Bias mechanism to the model (Rothkegel,
Trukenbrod, Schütt, Wichmann, & Engbert, 2017). The follow-
ing section will expand on how we used previously proposed
features of visuomotor control and attention to motivate the
update of the SceneWalk model.

Figure 1: The figure outlines three systematic effects found in
eye movement: saccade amplitude distribution, saccade an-
gle distribution and the relationship of fixation durations and
saccade angles. We compare empirical scan paths to sim-
ple sampling from a density, a homogeneous process and the
local saliency as implemented in the SceneWalk model.
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Extending SceneWalk
The existing literature includes evidence for attentional shifts
directly preceding saccades (Deubel & Schneider, 1996) as
well as attentional remapping immediately following saccades
(Golomb, Chun, & Mazer, 2008). There are also indications
that in addition to inhibition of return, in certain time frames
there is also a facilitation of return (e.g., Smith & Henderson,
2009.

The proposed extensions of the SceneWalk model are
based on splitting each fixation into three distinct phases of
attention and saccade control:

• The fixation phase is implemented exactly as in the origi-
nal SceneWalk model. At the end of this phase the upcom-
ing fixation location is selected and at the beginning effects
of the previous saccade are important.

• The pre-saccadic phase begins shortly before saccade
onset. The attention Gaussian precedes the eye movement
to the next fixation location while the inhibition Gaussian re-
mains centered around the current position.

• The post-saccadic phase immediately follows the sac-
cade. During this phase the attention Gaussian is shifted
in the direction of the saccade, emulating a retinal remap-
ping system.

To enable facilitation of return saccades in the model, we
assume that there is a prolonged activation in the attention
map at recently fixated locations. Mathematically, we im-
plemented a location-dependent decay of the attention map,
where a small window around the previous fixation location on
the attention map decays slower (ωshi f t ) than on average for
the map (ωA).

In the next section, we report some qualitative analyses of
the consequences of these model modification for scan path
statistics.

Results
Using the extended SceneWalk model, we generate data and
compare experimental scan paths from human participants
with model-simulated data. As shown in Fig. 3, the model-
simulated scan paths now qualitatively reproduce the shape of
the saccade angle distribution. Furthermore, for the complex
relationship between fixation durations and saccade angles
we observe good qualitative agreement between experimen-
tal and simulated data (Fig. 4).

Our results lend support to the idea that pre- and post-
saccadic attention shifts are responsible for some of the dy-
namics found in eye movement data. Thus, we find that
neurally-inspired mechanisms are highly compatible with scan
path generation when implemented within our dynamical
framework of the SceneWalk model.

Outlook: Likelihood-based Parameter Inference
We set out to implement neurally-inspired visuomotor control
principles to improve a model of scan path generation. Re-
sults reported here suggest that, with the modifications, the

Figure 2: The three phases of the SceneWalk model. The cir-
cles indicate fixation positions, with n being the current. The
green, 5-pointed star is the center of the attention Gaussian
while the red, 3-pointed star is the center of the inhibitory
Gaussian. Panel 1 shows the main fixation phase, where fix-
ation position and the Gaussians align. In Panel 2 the center
of the attention Gaussian moves to the upcoming fixation po-
sition, modelling a presaccadic attention shift. Panel 3 shows
the post-saccadic attention shift where attention shifts in the
direction of the saccade after fixation onset. After the post-
saccadic phase, attention moves to the current fixation posi-
tion, establishing the same situation as in Panel 1.
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Figure 3: The extended SceneWalk model simulates data with
a saccade angle distribution which qualitatively resembles the
empirical distribution.
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Figure 4: The relationship between saccade angle and fixation
duration in the empirical data has a distinctive shape. The ex-
tended SceneWalk model produces a comparable relationship
between the two measures.

SceneWalk model can be improved to include important sys-
tematic tendencies of eye-movement behavior. Ongoing work
focuses on likelihood-based parameter inference for the ex-
tended version of the SceneWalk model.

The SceneWalk model generates a continuous-time evolu-
tion of a target map for upcoming fixations. For likelihood-
based parameter inference, this target map provides an
efficient tool to compute the likelihood for experimentally-
observed fixation sequences. Thus, the likelihood can be
computed numerically without approximation. Such models
with a computable likelihood function are characterized by two
considerable advantages. First, it is straightforward to esti-
mate model parameters by maximizing the likelihood of the
model given some empirical data. Moreover, since the model
is implemented efficiently, the likelihood opens the door to a
fully Bayesian framework (Schütt et al., 2017). Using a Differ-
ential Evolution Adaptive Metropolis Algorithm (Laloy & Vrugt,
2012) we obtained pilot results recently for the improved ver-
sion of the model. Secondly, models with a likelihood function
are more easily compared to competing framework, as com-
parisons does not have to rely on ad-hoc performance metrics
that are, in most cases, motivated by experimental research
but lack statistical rigor.

Finally, estimated parameters can then be fed back into the
model to simulate data on the level of individual observers.
The fit between simulated and experimental data will shed
light on the dynamical system that produces fixation behav-
ior, including interindividual differences in fixation behavior
(de Haas et al., 2019) and the underlying visuomotor mecha-
nisms.
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