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Abstract: 

Neural computations along the ventral visual stream, -- 
which culminates in the inferior temporal (IT) cortex -- 
enable humans and monkeys to recognize objects 
quickly. Primate IT is organized topographically: nearby 
neurons have similar response properties. Yet the best 
models of the ventral visual stream - deep artificial neural 
networks (ANNs) – have “IT” layers that lack topography. 
We built Topographic Deep ANNs (TDANNs) by 
incorporating a proxy wiring cost alongside the standard 
ImageNet categorization cost in the two “IT-like” layers 
of AlexNet (Lee et al., 2018), by specifying that “neurons” 
that have similar response properties should be 
physically close to each other. This cost both induced 
topographic structure and altered tuning characteristics 
of model IT neurons. We presented 2560 naturalistic 
images to monkeys and to ANNs. We found that, relative 
to the base (nontopographic) model, the “neurons” in the 
“IT” layer of some of the TDANN models matched actual 
IT neurons slightly better, and the dimensionality of the 
TDANN “IT” neural population was much closer to that 
of the measured monkey IT neural population. We also 
found that, while TDANNs did not show a statistically 
significant better match to human object discrimination 
behavior, detailed analysis suggests a trend in that 
direction. Taken together, TDANNs may better capture 
properties of IT cortex and wiring costs might be the 
cause of topographic organization in primate IT.  

Keywords: object vision; IT; ANN; topography; 
dimensionality  

Introduction 
Humans and monkeys recognize objects with ease, 
thanks to the neural computations conducted in the 
ventral visual pathway, which culminates in the inferior 
temporal (IT) cortex. Primate IT has a topographical 
organization: nearby neurons tend to have similar 
response properties, and clustering of neural selectivity 
for some object categories is particularly strong (e.g., 

faces and bodies). In recent years, deep artificial neural 
networks (ANNs) have revolutionized computer vision, 
and have also been shown to be the best models of the 
ventral stream in that they account for monkey V4 and 
IT responses far better than other models (Yamins et 
al., 2014). Yet ANNs lack topography in “IT” layers, 
which limits their suitability as models of the ventral 
stream. 
To determine whether topography might be important to 
the functioning of the ventral stream, we built 
Topographic Deep ANNs (TDANNs) by incorporating a 
proxy wiring cost alongside the standard ImageNet 
categorization cost in AlexNet (Lee et al., 2018). The 
proxy wiring cost is implemented in the two penultimate 
layers of TDANNs by specifying that “neurons” placed 
in proximity on an artificial tissue map should have 
similar response properties. 
We used four variants of TDANNs with increasing proxy 
wiring costs to see how topography affects a model’s 
functional fidelity with primate IT (i.e., the model’s ability 
to predict median single IT site response measures), its 
representational dimensionality (measured by 
participation ratio) relative to IT, and its predictivity of 
human behavior. 

Methods 
Topographic Deep ANNs  
The architecture of TDANNs was based on AlexNet 
(Krizhevsky et al, 2012): five convolutional layers and 
two fully-connected layers (fc6 and fc7). The 
topographic constraint was applied to “IT” layers fc6 and 
fc7, as these layers showed the highest predictivity of 
IT representations. In addition to training the models to 
classify 1.2 million images into 1000 categories using 
the ImageNet dataset, we added a wiring cost 
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constraint, as follows. We assigned a random position 
for each of the model units in “IT” layers (fc6 and fc7) 
on a two-dimensional artificial tissue map before 
training, simulating cortical maps in monkey IT (Figure 
1). The size of the tissue map was 10mm x 10mm, 
which corresponds to the processing of 8° of visual 
angle at the center of gaze. We derived the cost 
function as a local correlation rule from monkey IT 
neural recordings, where the pairwise response 
correlation of neurons are high for nearby pairs and 
decrease as a function of their cortical distance. Along 
with image classification task, our models were trained 
to satisfy this local correlation rule. We tuned the 
strength of the wiring cost constraint (relative to the 
image classification cost) by manipulating a ‘loss 
weight’ parameter. We used loss weight 0 (base 
model), and increasingly stronger loss 10, 20, 30, and 
40 and trained each model three times with different 
initialization conditions. All results presented here are 
based on three randomly-initialized models for each 
parameter setting. 
 

 
 
Figure 1. Topographic Deep ANNs (TDANNs) 
architecture. The proxy wiring cost is implemented in 
the two penultimate layers of TDANNs by specifying 
that “neurons” placed in proximity on an artificial tissue 
map should have correlated response properties. The 
fall-off of response correlation vs distance varied in a 
range based on monkey IT neural recordings. During 
training, weights were tuned to maximize object 
classification performance while adhering to the local 
correlation function.  
Monkey Recordings 
Neural responses to 2560 stimuli were recorded from 
168 IT neurons (Majaj et al., 2015). The images were 
from eight object categories (animals, boats, cars, 
chairs, faces, fruits, planes, tables). An image was 
generated by pasting an object on a naturalistic 
background with random position, pose, and size of an 
object. Recordings were acquired from two monkeys, 
each implanted with two Utah arrays in IT. Images were 
shown for 100ms at 8° visual angle. Neural firing rate 
was averaged in the window between 70 ms and 170 
ms. We measured the neuronal predictivity of ANN units 
using cross-validated partial least squares regression 

(PLS) with 25 principal components to map ANN units 
to each neural site. The neuronal predictivity was 
expressed as Pearson correlation between the ANN 
predictions and measured neural responses. 
Dimensionality Estimates 
We used the participation ratio as our dimensionality 
measure (Gao et al., 2017). We randomly subsampled 
the number of units from ANNs that we had neurons in 
our monkey recordings (N = 168), multiple times, and 
added Poisson noise comparable to the noise in 
monkey recordings to ANN units before computing the 
participation ratio. We obtained similar results with four 
other unit subsampling methods. 
Behavioral Measure 
Human behavioral data were acquired for 240 images 
from 24 categories (Rajalingham et al., 2018). A sample 
image was presented for 100 ms followed by two 
choices: an object from the initial image with potential 
variations in position, pose, and size, and another 
object from one of the remaining 23 categories. 
Behavioral performance was represented in a 240 
image x 24 category matrix showing accuracy for each 
combination of the sample image and 
discrimination category. Similarly, we trained a 
classifier on the base (nontopographic) model’s and 
TDANN’s activations to mimic the task performed by 
humans, and created corresponding 240x24 matrices 
for the models. We then compared each model to 
human behavior by correlating these matrices (Pearson 
correlation). 

Results 
Neural Predictivity of TDANNs 
We used four variants of TDANNs with increasing proxy 
wiring costs to ask how topography affects a model’s 
functional fidelity with primate IT, i.e. the model’s ability 
to explain and predict IT spiking response measures. 
We found that the functional fidelity of TDANNs (“IT” 
layer, fc7) was slightly higher than the non-topographic 
base model (Figure 2). Neural predictivity was the 
highest for loss 20 and loss 30. However, neural 
predictivity of the TDANN started dropping at loss 40, 
suggesting that optimal proxy wiring costs exists that 
maximizes neural predictivity. 
 
Dimensionality of TDANNs 
The number of linearly independent coding dimensions 
(aka “dimensionality”) is an important characterization 
of each ventral stream area, yet it is still unclear if 
conventional deep ANNs match the brain's 
dimensionality. We expected that the proxy wiring cost 
constraint might reduce the dimensionality, however, it 
could be that the dimensionality is reduced too much or 
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not enough relative to monkey IT. We found that the 
base model dimensionality (measured by participation 
ratio) is 3.71 higher than measured monkey IT 
dimensionality. In contrast, TDANNs were closer to 
empirical estimates of the (subsampled) dimensionality 
of IT (Figure 3). To compare the dimensionality of 
monkey IT and the models, we subsampled the same 
number of features from models as we have neurons in 
monkey recordings (N = 168), and added Poisson noise 
comparable to the noise in monkey recordings. We do 
not claim that we have estimated the full dimensionality 
of IT (as we have a very limited image set and a limited 
neural sample). We simply claim that the same 
dimensionality analyses applied to IT and to the models 
showed that TDANNs were more similar to IT than the 
base model. 

 
Figure 2. Effect of the proxy wiring cost constraint on 
neural IT predictivity. Median raw IT site response 
predictivity using PLS regression with cross-validation 
(Pearson correlation) averaged over 3 randomly 
initialized models for each model class (“IT” layer, fc7). 
IT predictivity of TDANNs was significantly better than 
the non-topographic base model. Error bars represent 
standard deviation across 3 randomly initialized 
models. Significant differences between model IT 
predictivity are indicated by horizontal lines (two-
sample t-test, p<0.05). 

 
Figure 3. Effect of the proxy wiring cost constraint on 
dimensionality. Dimensionality was calculated for a set 

of the same 2560 images using participation ratio 
(estimated after subsampling of features and added 
Poisson noise) in “IT” layer (fc7) in the base model and 
TDANNs with varying amount of topographical loss. 
The dimensionality of TDANNs is comparable to 
measured monkey IT dimensionality. Error bars 
represent standard deviation across 3 randomly 
initialized models. Significant differences between the 
dimensionality of the models, and models’ 
dimensionality and monkey IT are indicated by 
horizontal lines (two-sample t-test, p<0.05). 
Behavioral predictivity of TDANNs 

A good model of the brain should also be able to predict 
human and monkey object discrimination behavior. As 
humans and monkeys have very similar behavioral 
patterns on the task we evaluated (Rajalingham et al., 
2018), we only looked at human behavioral data. 
Human behavioral data was acquired for 240 images, 
where subjects indicated what object was presented on 
an image selecting one of the two choices (presented 
after the sample image). To mimic the task performed 
by humans, we trained a classifier on the base model 
and TDANNs activations and compared behavioral 
matrices of humans and ANNs. TDANNs with loss 10 
and 20 were able to predict human behavior at a similar 
level to the base model (Figure 4A). However, larger 
proxy wiring cost started hurting behavioral predictivity, 
pointing again that there is an optimal amount of proxy 
wiring constraint. In our case, that seems to be loss 20, 
as it improved neuronal predictivity, brought 
dimensionality closer to that observed in IT, and did not 
affect behavioral predictivity. It could be that our 
behavioral measure is not sensitive enough to detect 
differences between the base model and TDANN loss 
20, so to increase that sensitivity we need to calculate 
a behavioral score using only the subset of stimuli for 
which the base model and TDANNs give the most 
different category predictions. We selected the stimuli 
with the largest absolute difference (in either direction) 
between the base model and the TDANN topo loss 20 
(residuals) for category predictions that were 
consistently different across 3 randomly initialized 
models (Figure 4B, N = 18) and recomputed behavioral 
scores for these stimuli. We stress that we looked for 
predictions that are different between the base model 
and the TDANN, not the predictions where the TDANN 
was better. The TDANN loss 20 seemed to predict the 
responses to this subset of stimuli (Figure 4C) slightly 
better than the base model.  

Discussion 
The proxy wiring cost added to the base model altered 
the tuning characteristics of the model IT neurons. We 
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found that, relative to the base model, the “neurons” in 
the “IT” layer of some of the TDANN models were a 
slightly closer match to actual IT neurons, and that the 
dimensionality of the TDANN “IT” neural population 
was closer to that of the measured monkey IT neural 
population. While these more brain-like ventral stream 
models did not show a statistically significantly better 
match to human object discrimination behavior, 
detailed analysis suggests a trend in that direction. 
 
It would be interesting to explore the similarity of 
representational dimensions in TDANNs and in 
monkey IT using a larger stimulus set and larger neural 
sample. It would be also interesting to extend our 
approach to all layers of the base model by 
incorporating proxy wiring cost at all layers of the model 
and evaluate its ability to predict neural responses 
across the ventral stream. 
 
In summary, our results suggest that TDANNs may 
better capture properties of IT cortex and the wiring 
costs might be the cause of topographic organization in 
primate IT. Broadly, these results also show that using 
brain observations not already in place in deep ANNs 
(here topography) can lead to improved models of the 
brain. 

 

Figure 4. Effect of the proxy wiring cost constraint on 
behavioral predictivity. A. Humans indicated which 
object was presented in an image, selecting one of the 
two choices (presented after the sample image) for 

each of 240 sample images. We trained a classifier on 
the base model and TDANNs activations to mimic this 
task and compared behavioral matrices of humans and 
ANNs (Pearson correlation between behavioral and 
ANN matrices, image-by-image patterns, broken down 
by the object choice alternatives - I2n). B. Selected 
stimuli with the largest absolute difference between the 
base model and the TDANN loss 20 for category 
predictions (residuals, N = 18). C. Behavioral 
predictivity for selected stimuli. Error bars represent 
standard deviation across 3 randomly initialized 
models. Significant differences between model 
dimensionality are indicated by horizontal lines (two-
sample t-test, p<0.05). 
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