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Abstract
Flexibly adapting to different task requirements is a key
challenge of the visual system. In particular, depend-
ing on a potentially unobserved context the same stimuli
might require different behavior. While task-related ac-
tivity has been identified as early as the primary visual
cortical (V1) activity in mice, it remained unknown if and
how the visual cortex primarily dealing with feed-forward
input contributes to efficient arbitration between tasks.
Mice were trained to perform a multimodal task-switching
paradigm where animals were required to make decisions
either based on the identity of visual or that of auditory
stimuli. Neural activity was recorded from all layers of
V1 on 128 channels with extracellular electrodes. Our
analysis has identified task-related variables in popula-
tion responses. Importantly, while task-related variables
could be identified mostly during stimulus presentation,
the variable that could identify the specific task being per-
formed could be reliably decoded from intertrial intervals,
indicating a representation which is aware of the across
trial contingency of task context. These results provide
insights into how continual learning, the major challenge
concerning the acquisition of multiple tasks relying on
the same neural circuitry, can be achieved in biological
agents.
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Adaptation is key to survival. Adaptation encompasses
learning both the stimulus statistics and task contingencies.
Critically, in a rich environment animals need to adapt to multi-
ple tasks. Continual learning is a central challenge in machine
learning and it concerns the question how multiple tasks can
be learned using the same circuitry. Elastic weight consolida-
tion (Kirkpatrick et al., 2017) and learning latent task variables
(Flesch, Balaguer, Dekker, Nili, & Summerfield, 2018) are two
contrasting methods to avoid catastrophic forgetting, the ef-
fect when more novel tasks tend to overwrite learned repre-
sentations. The challenge of multiple task learning is particu-
larly prominent when animals need to make different choices
based on the same stimulus depending on task context. While
being challenging, it provides an opportunity to study task ef-
fects in more detail.

Successful execution of a task implies that task-relevant
quantities are represented in some form in the neural circuitry.
In the primary visual cortex (V1) of rodents, a large number
of studies have demonstrated task-induced variance in neu-

ronal responses (Poort et al., 2015; Allen et al., 2017; Caras
& Sanes, 2017). Besides the feed forward input carrying sen-
sory information through the thalamus, top-down inputs are
associated with such task-related activity (Caras & Sanes,
2017). Earlier studies have discovered an intricate set of vari-
ables, including locomotion (Polack, Friedman, & Golshani,
2013), attentional signals that change between task-engaged
and passive conditions (Allen et al., 2017), and a signal that
has been interpreted as a potential reward expectation sig-
nal, which emerges prior to the presentation of stimuli directly
relevant to task-execution (Jaramillo & Zador, 2011; Poort et
al., 2015). It remains unclear however, how these signals can
contribute to a flexible arbitration between task demands.

Investigation of how a V1 neuron population deals with the
execution of two tasks provides an opportunity to understand
how the neural system can deal with continual learning and
to get an insight how top-down influences contribute to task
execution.

Results

Isolated units were extracellularly recorded with 2x64 elec-
trode shanks from all layers of V1 of 14 mice performing a mul-
timodal (visual and auditory) perceptual discrimination task.
Animals were rewarded for licking upon perceiving a go sig-
nal and avoided delay of the next trial for withholding licking at
the no-go signal. The modality of the go/no-go pair was not
constant in a recording session but the animals were required
to switch the relevant modality. Cuing epochs, featuring trials
where stimuli with a single modality were present, were fol-
lowed by dual-modality epochs in which both modalities were
present but animals were required to make decisions based
on the modality presented in the preceding epoch while ignor-
ing the other (Fig. 1). This setting permits the study of task-
related signals since the same pair of stimuli could appear in
different task contexts.

Representation of behavioral choice. First, following ear-
lier indications (Reynolds & Heeger, 2009) that stimuli relevant
to a particular task are represented with higher precision, we
trained a linear decoder for decoding the orientation of the
visual stimulus on two subsets of trials: first, when the ani-
mal was required to make its decision based on this stimu-
lus modality; second when it was required to ignore it. De-
coding visual information was more efficient at most, albeit
not all animals when attended to, compared to when ignored
(Fig. 2). Similarly, we repeated the analysis with a focus on
the representation of the auditory stimulus. Interestingly, the
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Figure 1: Task switching between contexts. Top: Stimuli and
role of stimulus modalities in dual-modality tasks. Bottom:
Block layout of an experimental session.

Figure 2: Stimuli decod-
ability difference between
attended to and ignored
blocks, for visual and au-
dio respectively; integrals
of accuracy timecourse 95%
significant differences during
stimulus; colors: individual
mice, boxplots: mean, 2
s.e.m. for 11 mice

analysis for the auditory modality yielded similar results, with
a more pronounced improvement when attended. These re-
sults confirm that attended task-relevant stimulus can be more
efficiently read out from the neuron population.

Next, our goal was to elaborate on population phenom-
ena leading to a more efficient readout of information when
a particular modality is relevant. We investigated population
responses with a linear unsupervised method, tensor com-
ponent analysis (Williams et al., 2018, TCA), which indicated
that variability is induced in population responses by a num-
ber of easily interpretable features related to task execution
(data not shown). To explicitly test the contribution of differ-
ent task-related variables, we constructed decoders for these
variables, including visual stimulus identity, auditory stimulus
identity, the choice the animal made (Fig. 3A,B,D). While most
reliable decoding can be achieved for the visual stimulus iden-
tity, both auditory stimulus identity and choice identity could
be obtained with different time courses. Importantly, since an-
imals were required to be able to perform multiple tasks, the
task identity (referred later as context) is also a relevant factor,
and we constructed a specific decoder for this variable (Fig.
3C). Importantly, high decoding performance of task identity
indicates that context contributes to population activity by driv-
ing it to separate subspaces when context changes.

Using the insight obtained from the decoding analysis, we
wanted to investigate the source of performance improvement

0 3000
0.5

1.0

vi
su

al
 a

cc
ur

ac
y

A

0 3000
0.5

1.0

au
di

o 
ac

cu
ra

cy

B

0 3000
[ms]

0.5

1.0

co
nt

ex
t a

cc
ur

ac
y

C

0 3000
[ms]

0.5

1.0

ch
oi

ce
 a

cc
ur

ac
y

D

Figure 3: Time course of linear decoding of task variables
in multimodal trials for a well-trained mouse. Decoder per-
formance was measured at different time windows along the
trial (10 ms resolution sliding 50 ms wide windows of instanta-
neous firing rate). Grey: stimulus present. Panels correspond
to visual and audio stimulus identity, context and choice for
panels A-D, respectively.

when the decoded variable is relevant for decision. In partic-
ular, we wanted to test if the more reliable representation of
stimulus identity is a result of increased separability of stimuli
along the axis where changes in stimulus identity introduce
variance, or changes in other task-related variables. We used
the decision boundaries determined by the linear decoders
of (Fig. 3) to establish the directions in the population activ-
ity space along which population responses can be classi-
fied. We used the normal vectors of the decision boundary
hyperplanes as basis vectors spanning particular subspaces,
and projected instantaneous firing rate vectors of the popula-
tion onto these subspaces. In particular, to investigate per-
formance improvement in visual decoding, we used the deci-
sion normal vectors of visual and choice decoders as a basis
to construct a two-dimensional subspace, on which the pro-
jection of individual trials are represented as individual points
(Fig. 4). The bases obtained from the multimodal blocks are
not orthogonal, meaning that these variables are correlated,
but are consistently linearly highly independent (blue and yel-
low lines). Trial-by trial analysis of the planar subspace un-
der the ignore visual condition (purple and red symbols) re-
veals that in this task condition the decision normal alone
would be closer to orthogonal to the choice condition. How-
ever, upon performing the attend to visual task a shift is in-
troduced in the population response vectors along the choice
direction (blue and turquoise symbols). This systematic shift
introduces larger separation which accounts for decoding per-
formance improvement when the visual stimulus is relevant for
decisions. Importantly, the separation is more pronounced if
we take into account the performance of the animal: in incor-
rect trials separation is less pronounced thus decreasing the
separation of the responses according to stimulus identity. In
summary, these results indicate that the attention-related im-
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visual decoder normal
choice decoder normal
ignore visual, φ = 45º
ignore visual, φ = 135º
attend visual, φ = 45º, hit
attend visual, φ = 45º, miss
attend visual, φ = 135º, corr. rej.
attend visual, φ = 135º, false alarm

Figure 4: Trial-by-trial instantaneous firing rate responses of
the neuron population in the subspace defined by the normal
vectors of the choice and visual stimulus identity decoders.
Dots represent the projection of rates calculated in the first
second of the trials on the normal vectors of the decoders
in multimodal trials. Three panels correspond to data from
three mice. Note that decision boundaries are not orthogo-
nal. Shaded areas correspond to mean + 2SD in a given con-
dition. Attending to the visual stimulus results in consistent
shifts along the choice dimension. Note that incorrect trials
(crosses) tend to be closer to the mean of the unattended tri-
als along the choice axis.

provement can be traced back to the introduction of a choice
variable that operates in a subspace linearly independent form
the subspace where the stimulus identity introduces variability.
Representation of context. Earlier accounts of learning
identified a task-specific signal in a period preceding the ap-
pearance of the target stimulus, which has been speculated
to be linked to reward expectation (Jaramillo & Zador, 2011;
Poort et al., 2015). Our task design permits a more detailed
investigation of prestimulus task-related activity, more specif-
ically, we address the question if prestimulus task-related ac-
tivity conveys information solely about the expected reward or
about the actual task context as well. Linear decoding analysis
of the activity during stimulus presentation (ON-stimulus activ-
ity) reveals that stimulus and task variables can be identified
from ON-stimulus activity (Fig. 5A, left). Critically, our analysis
on the identification of task context based on the V1 popula-
tion activity shows a relatively stable representation of sponta-
neous activity not only during stimulus presentation, but task
identity can be identified with equally high reliability beyond
stimulus presentation (Fig. 3C). Indeed, while other variables
cannot be identified in the population activity preceding stim-
ulus presentation, the contextual variable identifying the task
can (Fig. 5A, center). Decodability of task context both from
the prestimulus and ON-stimulus activities does not ensure
that the prestimulus and ON-stimulus activities would be de-
coded along the same activity subspace. We therefore de-
signed an analysis which tests if the prestimulus activity distri-
bution represents the context variable identically to that in the
ON-stimulus activity distribution. We used a decoder trained

on a short period during the prestimulus activities of the mul-
timodal tasks (the same period as the one shown on Fig. 5B)
but tested on activity distributions obtained from a different
time window in the prestimulus period and on a time window
during ON-stimulus activity. This across-time test revealed
equally efficient task context decoding both during the pres-
timulus period and during ON-stimulus period (Fig. 5A, right).
Thus, in the period preceding the stimulus not simply reward
expectation but also a signal specific to the task is present.
Furthermore, this task-specific signal is invariant across on-
stimulus and off-stimulus periods.

Task learning is a delicate problem and studies of classi-
cal conditioning indicate that animals are able to build par-
simonious models of environmental variables during learning
(Courville, Daw, & Touretzky, 2006). It is unclear if the task
variable we identified in the prestimulus activity reflects such
a parsimonious representation of the task. In particular a par-
simonious representation would indicate that the task is iden-
tical if the set of stimuli used for making decisions are not
changing irrespective if other distractor stimuli are present (in
our case these are the non-attended stimuli). We tested if the
context variable that we identified in the V1 population activ-
ity in multimodal trials is invariant to the presence or absence
of the unattended stimuli. We used the decoder trained on
the prestimulus activity of multimodal trials to assess context
in single-modality trials (Fig. 5B). Decoding context from the
first block of the experiment revealed that the behaviorally rel-
evant modality reliably predicted population activity along the
dimension defined by the context variable both in the pres-
timulus (Fig. 5B) and in the ON-stimulus periods (Fig. 5B).
Interestingly, this block being at the very beginning of the ses-
sion the animal had no exposure to multimodal stimuli. Still,
the context variable reliably identified the whole task and data
indicates that animals recognize the task almost immediately
after the start of the block. A similar analysis of the single-
modality block separating the two multimodal blocks reveals
that the population activity gradually drifts from one context
to the other context (Fig. 5B), with considerable variability in
speed of adaptation across animals. These results indicate
that task context variable reflects a parsimonious representa-
tion of the task.

The robust presence of the task context variable in both
prestimulus and on-stimulus activities indicates that the ac-
tivity of the neuron population reflects the characteristics of
the specific task. In particular, even if bottom-up signals have
overlapping representations in different tasks, the context vari-
able distinguishes the two representations. We wanted to test
if the representation of the context variable is related to other
measures that reflect task acquisition. We used the task-
specificity of the prestimulus activity as a measure for the effi-
ciency of task representation. The prestimulus task-specificity
of the activity across the whole population of recorded ani-
mals is well reflected in the task specificity in ON-stimulus pe-
riods (Fig. 5C). Interestingly, the decodability of choice from
ON-stimulus activity was also highly predictable based on the
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Figure 5: A, Discrimination between identities of various task
relevant variables in the multimodal blocks during stimulus
presentation (left), and prior to stimulus presentation (center).
Right, Across-time prediction of context: a context decoder
trained in a short time window prior to stimulus presentation
is used to predict the context variable in a different time win-
dow prior to the stimulus and during stimulus presentation. B
Decoding task context in individual single modality trials (hori-
zontal axis) based on decoders trained on the prestimulus pe-
riods of multimodal trials. Colors: smoothed single trial prob-
abilities from incorrect context (red) through chance (white)
to correct context (blue). Decoding is performed on both ini-
tial and switching block trials and both from prestimulus and
on-stimulus activities. C-F Predictability of decoder accuracy
from the performance of prestimulus decoder for context dur-
ing stimulus presentation (C), choice (D) and visual stimulus
identity (E). F, Visual decoder accuracy difference between
attended and ignored context, dashed line denotes no differ-
ence.

reliability of the context representation (Fig. 5D). To test if the
representation of context corresponds to a more efficient rep-
resentation of the stimulus, we compared context decodability
with stimulus decodability. We could not find significant de-
pendence between the two (Fig. 5E). Finally, we contrasted
context decodability to the level of improvement we measured
for decoding the attended stimuli over that of unattended stim-

uli. We found that the advantage of the attended stimulus de-
coding was highly predictable with the quality of context rep-
resentation (Fig. 5F).

Conclusions
Using a multimodal decision making task we have demon-
strated that signatures of a sophisticated representation can
be found which can be an underpinning of arbitrating between
multiple tasks using the same sensory cortical circuitry. Key to
our study is that identical stimuli are used in multiple contexts,
which made it possible to identify a task-specific variable for
context and a choice variable that was invariant across tasks.
Our results provide insights into how continual learning can be
achieved without catastrophic forgetting.
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