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Abstract

The Kalman filter, combined with heuristic choice
rules such as softmax, UCB, and Thompson sampling,
has been a popular model to identify the role of uncer-
tainty in exploration in human reinforcement learning.
Here we show that the Kalman filter combined with
a softmax or UCB choice rule is not fully identifiable.
By this structural identifiability, we mean that with
unlimited data, the true parameter values are deter-
minable. Perhaps surprisingly, the Kalman filter with
Thompson sampling is fully identifiable.

Keywords: Identifiability; Kalman filter; Softmax; UCB;
Thompson sampling; Multi-Armed Bandits

Introduction

There has been much interest in identifying the role of un-
certainty in exploration in human reinforcement learning
(Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006; Ger-
shman, 2018; Knox, Otto, Stone, & Love, 2012; Speeken-
brink & Konstantinidis, 2015; Wilson, Geana, White, Lud-
vig, & Cohen, 2014; Wu, Schulz, Speekenbrink, Nelson,
& Meder, 2018). Restless multi-armed bandit tasks are a
useful paradigm to empirically investigate this (Daw et al.,
2006; Speekenbrink & Konstantinidis, 2015), as they re-
quire continued exploration long after all options have been
tried initially. A prominent learning model for human be-
haviour in such tasks is the Kalman filter (Daw et al., 2006;
Gershman, 2015; Speekenbrink & Konstantinidis, 2015).
The Kalman filter provides a principled and computationally
efficient way to track both estimated value and the uncer-
tainty in these estimates. Combining the Kalman filter with
heuristic choice rules which aim to balance exploration and
exploitation, such as the softmax, upper-confidence bound
(UCB), or Thompson sampling, offers a powerful and flex-
ible computational framework to assess the role of uncer-
tainty in human reinforcement learning. When the Kalman
filter is an adequate descriptive model of how agents learn
(expected) rewards, estimating the relevant parameters of
the Kalman filter provides a window into their inductive
biases, such as how variable they believe rewards are, and
how changeable the environment is over time.

This paper addresses to what extent the parameters of
models combining the Kalman filter with heuristic choice
rules are structurally identifiable, in the sense that with un-
limited data, we would be able to determine the true value
of their parameters. For identifiable models, parameter es-
timates can be appropriately compared between or within
people and related to neural functioning. While the Kalman

filter combined with a softmax or UCB rule is not fully iden-
tifiable, perhaps surprisingly, the Kalman filter with Thomp-
son sampling is.

Gaussian restless bandits
We will focus on a simple and canonical version of a restless
bandit, where we assume that rewards Rt,i at time t for
bandit i are continuous and normally distributed around
the average reward µt,i for that option at that time, while
the average rewards vary over time according to a simple
random walk:

Rt,i = µt,i + εt,i εt,i ∼N (0,σ2
ε) (1)

µt,i = µt−1,i +ξt,i ξt,i ∼N (0,σ2
ξ
) (2)

where N (m,v) denotes a Gaussian (normal) distribution
with mean m and variance v. We refer to σ2

ξ
as the inno-

vation variance and σ2
ε as the noise variance.

Although we focus on an environment like above, for
which the Kalman filter is optimal, the results hold for any
task in which a Kalman filter is assumed to be an (approx-
imate) learning model for average rewards.

Bayesian learning and decision models

Kalman filter

The Kalman filter (Kalman, 1960; Kalman & Bucy, 1961)
is an efficient and algorithm to compute the posterior distri-
butions for µt,i for linear Gaussian dynamical systems such
as that defined by Equations 1 and 2. Assuming that the
innovation and error variances are known, and assuming a
Gaussian prior for the initial mean: µ0,i ∼ N (m0,v0), the
posterior distributions are all Gaussian:

p(µt,i|C0:t ,R0:t) = N (mt,i,vt,i) (3)

where C0:t = (C1, . . . ,Ct) and we have taken the liberty to
define C0 =∅ and apply the same notation for R0:t .

The Kalman filter provides an efficient way to sequen-
tially calculate the mean mt, j and variance vt, j of these
posterior distributions. The Kalman filter update equations
are:

mt,i = mt−1,i + kt,i(Rt −mt−1,i) (4)

and
vt,i = (1− kt,i)(vt−1,i +σ

2
ξ
) (5)

with the Kalman gain:

kt,i =


vt−1,i+σ2

ξ

vt−1,i+σ2
ξ
+σ2

ε

if Ct = i

0 otherwise
(6)
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At time t, before making a choice, the Bayesian value of
each bandit (its average reward) can be derived from the
prior predictive distribution

p(µt+1,i|C0:t ,R0:t) = N (mt−1,i,vt−1,i +σ
2
ξ
)

Softmax

The softmax rule can be viewed as a stochastic choice rule
in which the probability of choosing a bandit depends solely
on the estimated mean rewards mt,i. It can be stated as:

P(Ct = i|C0:t−1,R0:(t−1)) =
exp(γmt,i)

∑
N
j=1 exp(γmt, j)

(7)

where the inverse temperature parameter γ allows choices
to vary from uniformly random (γ = 0) to deterministically
always choosing the option with the highest estimated mean
reward (γ→ ∞).

Upper confidence bound (UCB)

The upper confidence bound (UCB) strategy can be defined
as follows:

P(Ct = i|C0:(t−1),R0:(t−1)) =

{
1 if i = argmax j ut, j

0 otherwise
(8)

where the upper confidence bound is defined as

ut,i = mt−1,i +β(
√

vt−1,i +σ2
ξ
), (9)

and the parameter β defines the width of the confidence
interval, e.g. setting β ≈ 1.96 results in always choosing
the bandit with the highest 95% upper confidence interval.

As the UCB rule is deterministic, it is generally not ap-
plied in the manner above to human choices. One way to
allow for deviations is to use an “epsilon-greedy” style im-
plementation, such that the bandit with the highest UCB
is chosen with probability 1− ε, while with probability ε,
a bandit is chosen uniformly at random. Another – more
popular – stochastic version of the UCB rule is to use a
softmax version (e.g. Daw et al., 2006; Speekenbrink &
Konstantinidis, 2015; Wu et al., 2018):

P(Ct = i|C0:(t−1),R0:(t−1)) =
expγut,i

∑
N
j=1 expγut, j

(10)

Thompson sampling

Thompson sampling (Thompson, 1933; May, Korda, Lee,
& Leslie, 2012), like the UCB rule, depends on both es-
timated value and the uncertainty in those estimates. In
words, it matches the probability of choosing a bandit with
the probability that it has the highest expected reward. A
Bayesian decision rule, this is based on the prior predictive
distributions p(µt, j|C0:(t−1),R0:(t−1)):

P(Ct = i|C0:(t−1),R1:(t−1)) = P(∀ j 6= i : m̃t,i > m̃t, j) (11)

where
m̃t,i ∼N (mt−1,i,vt−1,i +σ

2
ξ
)

is a sample from the prior predictive distribution of the mean
µt,i. In contrast to the softmax and UCB rule, there are
no further adjustable parameters, it only needs (sensible)
values for the environmental parameters m0, σ2

ξ
, and σ2

ε .

Model identifiability
Identifiability of a statistical model roughly means that any
change in model parameters implies a change in the like-
lihood. More formally, a model with parameters θ ∈ Θ,
where Θ is the parameter space, is identifiable when, for
(almost) all possible observations c ∈ C ,

P(c|θ) = P(c|θ′)↔ θ = θ
′ (12)

Identifiability of the KF-SM model

The Kalman filter softmax (KF-SM) model, with θsm =
(γ,m0,v0,σ

2
ξ
,σ2

ε), is not identifiable. The problem here is

that we can rescale the variance parameters v0, σ2
ξ
, and σ2

ε

by a common scaling factor α, such that v′0 = αv0, σ2′
ξ
=

ασ2
ξ
, and σ2′

ε = ασ2
ε , and get the same likelihood for θsm

and θ′sm = (γ,m0,v′0,σ
2′
ξ
,σ2′

ε ). Firstly, at t = 1, it is clear

that

v′0,i +σ2′
ξ

v′0,i +σ2′
ξ
+σ2′

ε

=
αv0,i +ασ2

ξ

αv0,i +ασ2
ξ
+ασ2

ε

=
v0,i +σ2

ξ

v0,i +σ2
ξ
+σ2

ε

(13)

Hence, θsm and θ′sm lead to identical Kalman gain k1,i for
all bandits i. In fact, the Kalman gain is identical at all
t > 1. For θ′sm, the posterior variance is

v′1,i = (1− k1,i)(v′0,i +σ
2′
ξ
) = (1− k1,i)(αv0,i +ασ

2′
ξ
) = αv1,i,

from which it follows that v′t,i = αvt,i for all t > 0. Hence,
we can replace v′0,i in Eq 13 by v′t,i, which shows that kt,i is

identical for θsm and θ′sm for all t > 0.
This means that only the relative values of v0, σ2

ξ
, and

σ2
ε , are identifiable in the KF-SM model. By fixing one of

the variance parameters to an arbitrary value (not equal to
0), the remaining parameters are identifiable.

Identifiability of the KF-UCB model

The Kalman filter UCB model (KF-UCB), with θucb =
(γ,m0,v0,σ

2
ξ
,σ2

ε), is not identifiable. Although the likeli-

hood of this model depends both on the means mt,i and
variances vt,i, rescaling v0, σ2

ξ
, and σ2

ε by a common factor

α, as above, will again provide identical likelihood values.
As shown above, the prior predictive variance then becomes
v′t,i +σ2′

ξ
= α(vt,i +σ2

ξ
) and setting by β′ = β/

√
α, the like-

lihood is identical for θucb and θ′ucb = (β′,m0,v′0,σ
2′
ξ
,σ2′

ε ).

The same will hold for the stochastic versions of the KF-
UCB model. Again, one of the variance parameters can be
fixed to an arbitrary value 6= 0, which will result in the other
parameters being identifiable.
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Identifiability of the KF-TS model

The Kalman filter Thompson sampling (KF-TS) model with
θts = (m0,v0,σ

2
ξ
,σ2

ε) is identifiable. While scaling the vari-

ances as above will provide the same prior predictive means,
the prior predictive variances will be affected uniquely, and
with that the choice probabilities.

Conclusions

We have shown that only the Kalman filter with Thompson
sampling is fully identifiable, while the Kalman filter with
softmax or UCB is not. For the latter models, one of the
variance parameters needs to be fixed to an arbitrary value.
While this often has been done (e.g. Speekenbrink & Kon-
stantinidis, 2015), the reason has not been laid out clearly.
While identifying all the parameters may not be a primary
concern, in many cases researchers are interested in com-
paring parameter estimates between people, in correlating
these with neural signals. In these cases, it is important
to realise what the consequences are of only having ac-
cess to e.g. relative variances. When the Kalman filter
with Thompson sampling is an adequate descriptive model,
as all parameters are identifiable, it is possible to compare
people according to e.g. the level of their prior uncertainty.

The results about identifiability presented here generalize
immediately to the“mean-stable”version of the Kalman fil-
ter (where σ2

ξ
is fixed to 0). In this case, the other variances

(v0 and σ2
ε) are still not identifiable, so one of these needs

to be fixed to an arbitrary value 6= 0. Generalization to
other Gaussian learning models, such as Gaussian Process
regression (e.g. Wu et al., 2018; Schulz, Speekenbrink, &
Krause, 2018), will also be relatively straightforward.

Parameter identifiability is an important but often over-
looked aspect of computational modelling of empirical data.
We have focused here on the structural identifiability of
relatively simple models, and we could show that particu-
lar models were not fully identifiable. For more complex
models, structural identifiability may not be as straightfor-
ward to determine analytically. In those cases, one may
attempt to address the identifiability of a model by more
“empirical” methods, such as assessing the “flatness” of the
profile likelihood (Raue et al., 2009). Such methods may
also be able to detect practical non-identifiability (in the
sense that a particular data set is insufficient to estimate
the parameters with any precision). As the models become
more complex, assessing the structural and practical identi-
fiability of models will become an increasingly difficult but
important aspect of computational cognitive neuroscience.
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