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Abstract: 

Decision-making in social contexts is commonly driven 

by two major sources of social influence: normative 
influence and informational influence. Our previous work 
has dissociated these two types of social influence, and 
have identified that bilateral temporoparietal junction 
(TPJ) encodes normative influence. However, it remains 
unclear whether the effect of normative influence 
causally depends on activity in the TPJ. Here, we present 
a transcranial magnetic stimulation (TMS) study using a 
similar paradigm in a within-subject design (i.e., right 
TPJ, left TPJ, and vertex). Behavioral results indicate that 
disrupting activity in the left TPJ resulted in reduced 
choice switch probability (i.e., less influenced by 
dissenting social information), relative to the right TPJ 
and vertex conditions. Computational modeling with 
hierarchical Bayesian parameter estimation suggests 
that the corresponding parameter quantifying normative 
influence significantly decreased in the left TPJ 
condition. However, the extent to which informational 
influence (i.e., social learning) was integrated into 
individuals’ valuation processes was comparable in all 
three conditions. Together, our results provide evidence 
for the causal role of left TPJ in computing normative 
social influence in human decision-making, whereas the 
integration of informative social influence in value 
computation remains intact.  

Keywords: social influence; transcranial magnetic 

stimulation (TMS); reinforcement learning; social 
learning; hierarchical Bayesian modeling.  

Introduction 

Most human decision-making takes place in a social 
context, which profoundly influences individual 

decision-making processes. In social situations, 

humans not only make choices according to the 
expected action-outcome association (e.g., Rangel,  
Camerer & Montague, 2008), but also tend to align their 

behavior with others. Behavioral studies have 
examined social influence as expressed by conformity  
(Asch, 1951) and have classified two major sources of 

social influence: normative and informational influence 
(Cialdini & Goldstein, 2004; Ruff & Fehr, 2014; Toelch 
& Dolan, 2015). Normative influence leads to public  

compliance, but individuals may maintain private 
beliefs, whereas informational influence hypothesizes 
that social information is integrated into the own 

valuation process.  

Our recent work (Zhang & Gläscher, 2019) has 
established a comprehensive neuro-computational 
account of social influence in human decision-making 
using a novel experimental paradigm. Crucially, we 

dissociated these two types of social influence, and 
have identified that bilateral temporoparietal junction 
(TPJ) encodes normative influence. However, it 

remains unclear whether the effect of normative 
influence causally depends on activity in the TPJ. If so, 
which side? To this aim, we employed the transcranial 

magnetic stimulation (TMS) technique to investigate the 
potential causal account between the bilateral TPJ and 
normative influence. A hierarchical Bayesian approach 

(Carpenter et al., 2017; Ahn, Haines, & Zhang, 2017) 
was used to uncover how individuals computed social 
influence and integrated social information into their 

own valuation processes. 
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Methods 

Paradigm 

We employed a social influence task modified from our 
previous study (Zhang & Gläscher, 2019). The core of 

the paradigm was a probabilistic reversal learning 
(PRL) task. In this two-alternative forced choice PRL, 
each choice option was associated with a reward 

probability (i.e., 70% and 30%). After a variable length 
of trials (i.e., 8-12 trials), the reward contingencies  
reversed, such that individuals needed to re-adapt to 

the new reward contingencies in order to maximize their 
outcome. The social influence task consisted of 3 
phases for every trial. Phase 1. Initial choice (1st 

choice). Upon the presentation of two choice options 
using abstract fractals, participants were asked to make 
their 1st choice (3000 ms). A yellow frame was then 

presented to highlight the chosen option. Phase 2. 
Choice adjustment (2nd choice). When all four other 
choices were presented, participants were able to 

adjust their choices given the social information (3000 
ms). The yellow frame was shifted accordingly to 
highlight the adjusted choice. Phase 3. Outcome 

delivery. Finally, the outcome was determined by 
participants’ 2nd choice (3000 ms plus a jittered inter-

trial interval 2000 – 4000 ms; Figure 1).  

Different from our previous study (Zhang & Gläscher,  
2019) where we conducted a real-time group study, 

here, only one participant was tested each time. 
Participants were informed that they were about to play 
with 4 independent “intelligent computer algorithms ” 

that best matched human behavior in the previous 
study. In fact, these algorithms were simulated from the 
winning model in our previous study (Zhang & Gläscher,  

2019). Crucially, each algorithm also made two 
decisions as the participant did: their 1st choice was 
governed by a combined value signal from direct 

learning and social learning, whereas their 2nd choice 
was regulated by the choices of the others. Participants  
were aware that those computer algorithms were able 

to learn from trial-and-error, and also took decisions of 
the others into consideration. To increase ecological 
validity further, we used human faces to indicate the 

computer algorithms. 

 

 

Figure 1: Experimental design. 

For each participant, they first played 10 training trials 
to get familiar with the task procedure, and then played 

100 trials per stimulation session (see below). The 

whole procedure lasted about 2 hours. 

Participants 

Forty healthy, right-handed participants were invited to 
participate in the study. No one had any history of 

neurological and psychiatric diseases, nor current  
medication except contraceptives. Five participants out 
of 40 who had either no switch at all or missed more 

than 20% responses were excluded. The final sample 
consisted of 35 participants (18 females). All 
participants gave informed written consent before the 

experiment. The study was conducted in accordance 
with the Declaration of Helsinki and was approved by 
the Ethics Committee of the Medical Association of 

Hamburg (PV3661). 

TMS Stimulation 

Stimulation site. We based our stimulation sites on the 
2nd-level map of the parametric modulation of dissenting 
social information from our previous study (Zhang & 
Gläscher, 2019). The peaks (MNI coordinates) of the 

bilateral TPJ were identified at x = 50, y = −60, z = 34 
(right), and x = −48, y = −62, z = 30 (left), respectively .  
Subject-specific stimulation coordinates were obtained 

using inverse normalization with trilinear interpolation 
implemented in SPM12, from MNI space to native 
space. Those coordinates were then superimposed 

onto each participant’s native T1 images. For the 
control site, we chose the vertex, defined for each 
participant in their own T1-weighted MRI scan as the 

intersection of the central sulci from both cerebral 
hemispheres. Vertex has been commonly used as a 
control stimulation site as stimulating vertex has 

minimal task-relevant effects (e.g., Hill et al., 2017;  
Polania, Nitsche, & Ruff; 2018). Locating subject-
specific stimulation sites, as well as creating landmarks 

of each participant’s brain, was implemented with the 
Brainsight software (Rogue Resolutions Inc Montreal,  

Quebec, Canada).  

Stimulation protocol. We applied a continuous theta-
burst stimulation (cTBS; Huang et al., 2005) to the three 

stimulation sites. We counterbalanced the order of right  
and left TPJ, and vertex was always in the middle  
(Figure 2). Following previous literature (e.g., Hill et al., 

2017), the cTBS stimulation protocol comprised 600 
pulses administered over 40 s in bursts of three pulses 
at 50 Hz (20 ms), repeated at intervals of 5 Hz (200 ms). 

Stimulations were controlled and delivered using the 
Magstim Rapid2 stimulator with an air-cooled coil 

(Magstim Co Ltd. Spring Gardens, Whitland, UK). 
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Figure 2: Stimulation protocol and experimental 

procedure. 

Results 

Behavioral findings 

We first measured the choice switch probability as a 
function of stimulation site, direction (with vs. against) 
and group coherence (2:2, 3:1, and 4:0). All two-way 

interactions were significant: site and direction (F2,475 = 
4.17, p = 0.016), site and coherence (F4,475 = 3.23, p = 
0.012), and direction and coherence (F1,475 = 5.77, p = 

0.017). The three-way interaction was approaching 
significance (F2,475 = 2.69, p = 0.069). Further analysis 
revealed that disrupting activity in the left TPJ resulted 

in reduced choice switch probability (i.e., less 
influenced by group disagreement), relative to the right  
TPJ (t475 = 4.599, p = 0.0008 Tukey corrected; Figure 3, 

top). 

We next examined the reaction time, also as a 
function of stimulation site, direction (with vs. against) 
and group coherence (2:2, 3:1, and 4:0). We found a 

significant main effect of stimulation site (F2,474 = 5.6, p 
= 0.0039). Further analysis indicated that disrupting 
activity in the left TPJ resulted in prolonged reaction 

time as compared to the right TPJ condition (t486 = 
3.228, p = 0.0038, Tukey corrected) and the vertex  
condition (t486 = 3.495, p = 0.0015, Tukey corrected;  

Figure 3, bottom). 
 

 

Figure 3: Choice switch probability and reaction time. 

Computational modeling 

We fit candidate models in the previous study (Zhang & 
Gläscher, 2019) to the current dataset. Our efforts to 
construct these models were guided by two design 

principles: (1) separating of the individual’s own value 
(Vself ) and the vicarious value of others (Vother) during 
learning, which were then combined into a choice value 

for the 1st choice (Vcombined), and (2) separating 
instantaneous normative social influence on the second 
choice and social learning from observing the 

performance of other players (i.e., informational 
influence). Crucially, we modeled the second choice as 
a function of two counteracting influences: (1) the group 

dissension (Nagainst) representing the instantaneous 
normative influence and (2) the difference between the 
participants’ action values in the 1st choice (Vchosen – 

Vunchosen) representing the distinctiveness of the current  
value estimates (Figure 4A). 

Parameter estimate results showed that the degree 

each participant integrating social learning into their 
own valuation process were not significantly different  
across stimulation sites [β(Vother); Figure 4B]. However,  

participants in the lTPJ condition weighted conflicting 
social information less when decide whether to switch 
or stay on their 2nd choice [β(Nagainst); Figure 4C].  

 

 
 

Conclusion 

The current study aims to establish the casual account  
between bilateral TPJ and normative influence in a 
novel social decision-making task. We found that down-
regulating activity in the left TPJ (rather than the right  

TPJ) resulted in reduced choice switch probability and 
declined reaction speed when individuals were 
contradicted by the group (i.e., normative influence).  

Computational modelling further revealed that the 
extent to which social learning was integrated into 
individuals’ own valuation processes was intac t (i.e., 

informational influence). 
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