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Abstract: 

Formal models play a crucial role in advancing 
knowledge about brain function. However, there are 
many incoherencies and questions typically asked in the 
field: what are good model goals? Which modeling tools 
are appropriate for a given question? When can we 
compare models? How can we know if model choices are 
appropriate and justified? This highlights some of the 
complexity of the modeling enterprise and suggests that 
modeling should be regarded as a high-dimensional 
decision process. Unfortunately, there is currently a lack 
of structure, principles and guidelines regarding this 
decision process. Here, we propose an organization of 
the problem, model and outcome spaces by describing 
modeling as a decision process that links model space 
to model utility via a crucial action space, i.e. model 
selection. We then provide decision heuristics and 
guidelines for best practices to help the modeler in the 
decision process. We hope this will help both modelers 
and reader better appreciate different models as an 
exercise of fruitful complementarity rather than a battle 
over what’s the “right” model.  
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Introduction 

What is the nature of the modeling decision?  It begins 
when we detect a gap in our knowledge. Some 
observation or phenomenon reveals a gap in our 
knowledge.  We notice something that provokes a 
question like “does that always happen”, or “how does 
that work?”, or “what causes that to happen?” For 
example in the moving train illusion, one might ask why 
do I perceive self-motion when I see the other train 
moving outside the window?  For modeling decisions, 
the state space is comprised of the scientist’s 
knowledge gaps.  Scientists formulate knowledge gaps 
into problems, and we can think of the state as a point 
in a problem space. A modeling action is the choice of 
a mathematical representation that instantiates a 
hypothesized way to fill the knowledge gap. The 
outcome of modeling is to verify or refute that the 
hypotheses “work” in the sense that they can plausibly 

fill in the gap, and this outcome has value according to 
the modeler’s evaluation criteria. 

We believe that formalizing the modeling process as 
a decision problem will provide the scientific community 
with clarity about their implicit goals, choices and 
preferences. We have previously proposed a guide on 
how to practically achieve this (Blohm et al., 2018). 
Below we flesh out the theoretical underpinnings of 
each of the decision components and argue that 
formalizing the decision problem turns the implicit and 
arcane art of modeling into an explicit choice problem 
that the scientific community can reflect on, improve 
and formally instruct. Specifically, this formalization 
suggests that modeling consists of a limited set of 
choices, i.e. defining the problem space (phenomenon, 
question, hypotheses, goals) and determining the 
desired model outcome space, i.e. what will I evaluate 
my model on? These choices will then naturally 
constrain the possible model space and thus simplify 
the model decision process. All these steps are detailed 
below and summarized in Figure 1. 

 

Figure 1: modeling is a decision process. A 
specific question is selected from the problem space. 
Deciding about the modeling approach then allows 
formalization of the question and hypotheses and 

analysis of the results. Results are interpreted in the 
light of the initial question with respect to specific 

goals, which span the outcome space. Outcomes are 
evaluated to produce a utility measure. 
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The problem space 

The problem space is what will define and constrain the 
actual modeling project and represents the knowledge 
gap. It is composed of four important and hierarchically 
linked components: (1) the phenomenon (P) at hand 
that requires better understanding, (2) the specific 
question (Q) that is of interest with respect to the 
phenomenon, (3) the detailed hypotheses (H) with 
respect to the research question, and (4) the particular 
modeling goals (G). We will outline each of these four 
dimensions and their linkages in this section, and we 
will illustrate these dimensions by using the well-known 
phenomenon of illusory self-motion induced by a 
moving train (see Figure 2).  

 

Figure 2: Example of problem space definition. A 
Phenomenon (P) can lead to different questions (Q). 
Each question can lead to different hypotheses (H) 
that are meaningful to achieve specific goals (G). 

1. The phenomenon (P) at hand typically describes an 
experimental observation for which there is a lack of 
understanding. Ideally, a phenomenological description 
includes detailed observational data. Data richness and 
availability of different parametric studies can vary; the 
more data is available, the better the question, 
hypothesis and goal spaces can be constrained. As 
mentioned above, an example of such a phenomenon 
could be the train visual illusion of self-motion.   

2. The lack of understanding of a phenomenon then 
triggers specific research questions (Q). Importantly, 
each phenomenon can potentially result in many 
different questions. For the train illusion, one might ask 
which parameters correlate with the strength of this 

illusion, which would be a descriptive level question 
(see model space below). Alternatively, one might be 
interested in why this illusion arises, e.g. because of 
optimal integration of different conflicting sensory 
signals. Or a neurophysiologist might ask what neural 
properties underlie this illusion. 

3. Once a question is formulated, researchers typically 
emit different hypotheses (H) about the expected 
relationships, mechanisms or properties underlying the 
phenomenon. These hypotheses crucially depend on 
the specific question asked. E.g., in the correlative 
question, one might hypothesize the set of independent 
variables that should play a role (e.g. speed, window 
aperture, weather conditions) or what functional 
relationship is expected (e.g. linear, quadratic, etc).  

4. Typically, the modeler also has specific goals (G) of 
the model in mind that depends on the question and 
hypotheses. For example, in considering the aperture 
as a crucial parameter, one might be interested in 
optimal train window design (engineering goal), or in 
characterizing the visual system (basic science), or in 
reducing illusion-induced nausea (clinical). 

This quartet of hierarchically linked components 
precisely defines the problem space. Of course there 
can be multiple hypotheses for a given question as well 
as multiple goals. Importantly, this description of the 
problem space defines the knowledge gap and we will 
use this below to inform the model selection process as 
well as the outcome evaluation. Indeed, as mentioned 
in Figure 1, we will propose a formal mapping between 
problem space, model space (this is what we will act 
on), outcome space and the utility of the outcome. We 
will do this in a probabilistic decision framework that 
allows us to optimize utility over all problem and model 
spaces. We argue that formalizing the problem space 
precisely will result in specific model selection 
(decision) heuristics. 

Model dimensions and action space 

Selecting a modeling approach is a decision process 
that is guided by the phenomenon we want to describe, 
the research question, our hypotheses and model 
goals. The problem space thus projects (maps) onto the 
model space. Here, we outline the different choice 
options, what model types exist and what questions 
they address.  

Models are not equal.  While there are many ways to 
classify models, we eschew classification by toolkit and 
instead focus on criteria that determine a model’s 
breadth of utility.  We argue that models vary along a 
few natural dimensions that determine well-defined 
limitations within which the model should be built and 
evaluated. We distinguish between two classification 
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criteria, an inferential criterion based on the generality 
of the model’s application, and criteria based on the 
level of abstraction (granularity, scale).  These criteria 
partially overlap but serve very different purposes. 

Generality/granularity: The generality classification is 
based on the amount of structural knowledge (in terms 
of causal influences) present in the model, while the 
granularity (or abstraction) class is more concerned with 
how directly one can map a model onto detailed 
processes in the brain. Thus, each model has a different 
place in both classification schemes. Figure 3 depicts 
this combined classification scheme graphically with 
specific examples in each model category. 

 

Figure 3: model classifications. Model generality 
(horizontal axis) is taken from Dayan & Abbott (2005). 

Granularity (left vertical axis) is adapted from David 
Marr’s classification (1976). Model scale (right vertical 

axis) depicts the system scale and is adapted from 
Churchland & Sejnowski (1992). Different models 

types are shown as examples within each 
categorization. GLM: general linear models. OFC: 

optimal feedback control. 

Abstraction: The vertical axes in Figure 3 depict the 
often-intertwined levels of granularity and scale of the 
physical elements modeled. These levels of abstraction 
form a hierarchy that is orthogonal to the generality 
(horizontal) dimension.  Like most areas of science, 
models in neuroscience usually abstract out the details 
of levels of resolution finer than the phenomena of 
interest. The appropriate level of abstraction for a model 
is contentious, with individual researchers often having 
preferences for a particular scale of analysis. Authors 
have pointed out the value of abstraction and the 
importance of working at multiple levels of analysis but 
from different points of view. 

Model outcome space and utility 

Robert Rosen's book Anticipatory Systems (2012) 
describes the models as an attempt to bring a formal 

system (the 'model') into congruence with a natural 
system. A goal is thus to capture the natural (causal) 
entailments of the natural system with the formal 
entailments of the model. Modeling is often regarded as 
an esoteric theoretical exercise with limited applicability 
to experimental research. While this unfortunately can 
be true, it is definitely not the goal. Rather, 
computational modeling of an experimental 
phenomenon has many tangible and important roles. It 
is well recognized that computational modeling is 
crucial for efficient and responsible research 
advancements. Here we list some of the unique insights 
gained through and advantages of computational 
modeling: 

1. Representing causal linkages between brain and 
behaviour. Computational neuroscience is a rapidly 
growing field that can provide formal theories and 
frameworks to analyze and explain empirical findings 
using computational models. Importantly, it can bridge 
the gap between neural properties, computational 
objectives and behaviour. Thus, computational 
modeling is the only means by which one can attempt 
to obtain causal linkages between individual neurons or 
populations of neurons and behavior. 

2. Guiding experimentation. One of the most 
important contributions of neurocomputation is to 
provide quantitative experimental predictions that can 
optimize experimental design, which is of particular 
importance when dealing with animal research or 
clinical patients. Smart computationally-driven 
experimentation can thus not only improve 
experimental outcomes but also be a guide in deciding 
which experiments are useful to do and which are not. 
This can be of particular importance when dealing with 
invasive methods requiring the sacrifice of animal life or 
when carrying out clinical investigations with limited 
tolerable patient access time. 

3. Explicating complex phenomena. Computational 
neuroscience is also instrumental for our mechanistic 
understanding of brain (dys-) function. Formal models 
can provide quantitative mechanistic insight into 
complex system behavior that simple thought 
experiments often simply cannot. As a result, 
researchers can obtain a thorough understanding of a 
given experimental phenomenon. 

4. Making assumptions explicit. The formalization of 
“word models” into mathematical language forces 
researcher to identify hidden assumptions and 
hypothesis underlying the model and missing 
knowledge. 

5. Plan interventions by simulating changes in 
brain and behaviour. Building a theoretical model of 
the brain, of a neural system or even a neural 
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mechanism can be used to investigate dysfunction, e.g. 
after stroke. Such models of disease are paramount in 
devising novel treatments and rehabilitation strategies 
to improve the quality of life of patients. 

6. Predict unobserved phenomena. Models can 
make targeted and testable predictions for 
experimentation. This is an important point. A model is 
a set of hypotheses that should be critically tested. The 
ultimate goal of this testing is its experimental 
validation/falsification, which in turn should lead to an 
improvement in the model. 

7. Facilitate translation into applications. Finally, an 
often-neglected aspect of modeling is the fact that 
mechanisms by which the brain work can inspire new 
technologies. This might seem abstract for many 
researchers, but there are numerous examples where 
such additional valorization has occurred, e.g. attention 
models and Bayesian surprise used in surveillance or 
artificial networks used in stock market predictions. 

Decision heuristics and best practices 

We will use decision theory to clarify the modeling 
process. Decision theory provides a normative 
framework for making decisions by choosing an action 
that optimizes an objective given the current state of the 

decision-maker.  Formally, taking an action a in a state 

s has a predicted outcome o with probability P(o|s,a) 

and this outcome is evaluated according to a criterion 

function U(o) called utility.  Given a state s, we choose 

an action that maximizes the expected value of the 
criterion function.  Formalizing modeling with decision 
theory means identifying the four concepts above - the 
state, action, outcome and utility functions.    

With the above understanding of the model dimensions, 
we can now ask how to choose between all the possible 
combinations of approaches. We will argue that this is 
essentially an evidence-guided decision process. It is a 
decision process that is constraint (and often 
determined) by several pieces of information. (1) A 
specific research question often directly points at a 
subspace of models. (2) Specific hypotheses further 
constrain this space. (3) Explicit modeling goals further 
narrow down options. Sometimes, there might not be an 
existing modeling class that satisfies all the 
requirements; in this case the decision process might 
result in a compromise. Below we will unpack the 
individual pieces of information. 

Let us consider the Outcome Space 𝑂𝑆 = 𝑓(𝑀𝑆, 𝑃𝑆) 
as a function of the model space (MS) and the problem 

space (PS) (see Figure 1).  If 𝑝 ∈ 𝑃𝑆, 𝑚 ∈ 𝑀𝑆, and 𝑜 ∈
𝑂𝑆, then we can express the utility of a model as a 

function of knowledge gained, i.e.  

 

The decision here refers to selecting a specific 
modeling toolkit / methodology. We can then generalize 
our approach and ask what the expected utility of 
different problem spaces is, which can be written as  

 

We can thus formally treat the modeling exercise as a 
decision problem that can be optimized. Further details 
regarding the practical process of how-to-model can be 
found in our separate treatment of the topic (Blohm et 
al., 2018). 

Discussion 

Our goal was to provide a systematic approach to 
making meaningful decisions in modeling. To do so, we 
propose to frame the modeling endeavor as a decision 
process. This promotes identification of key model 
aspects and allows for the quantitative analysis of best 
modeling approaches for a given problem/goal set.  

We believe that approaching the modeling exercise 
with the outlined rigor has key advantages in that it 
makes decisions, goals and desired utility of models 
explicit to the modeler and reader and thus increases 
transparency and clarity of models. We also hope that 
this will contribute to a more constructive and diverse 
set of models that are complementary, accepted by the 
research community and well justified in the field 
(Kording et al., 2018). 
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