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Abstract: 
Animals rapidly transform sensory experience into memory.       
How the mammalian brain supports these transformations       
has been subject to an enduring debate: Do medial temporal          
lobe (MTL) structures, typically implicated in memory-related       
behaviors, also play a role in perception? A rich experimental          
literature exists, yet reliance on descriptive accounts of        
stimulus properties (e.g. “feature ambiguity”) has made it        
difficult to synthesize results. In order to formalize perceptual         
demands on the MTL, in particular, the role of perirhinal          
cortex (PRC), here we adopt a combination of meta-analytic         
and computational approaches. We begin by designing a null         
model of PRC function in visual discrimination tasks, building         
from a computational proxy for the primate ventral visual         
system (VVS). With this model, we identify stimuli from         
previous studies that may not be diagnostic of PRC’s role in           
perception. We then demonstrate a striking correspondence       
between model and PRC-lesioned behavior across ten       
experiments (r=.80). Critically, the model and PRC-lesioned       
subjects fail on the same visual discrimination tasks, unlike         
controls. This approach formalizes the MTL’s role in        
perception by providing a tractable, stimulus-computable      
proxy for visual discrimination tasks in a PRC-lesioned state.  
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Introduction 

Animals rapidly transform perceptual experience into      
memory, allowing this information to guide future behavior.        
Here, we focus on how sensory information from the ventral          
visual system (VVS) is transformed within the medial        
temporal lobe (MTL). Traditionally, the MTL has been        
characterized as a system dedicated to supporting       
memory-related behaviors (Squire & Wixted 2011). In       
contrast, the Perceptual-Mnemonic Theory (PMT) argues      
that the MTL is also necessary for certain perceptual tasks          
(Bussy & Saksida 2007). This theory has centered on the          
role of perirhinal cortex (PRC), a MTL structure situated at          
the apex of the VVS (Suzuki & Naya 2014). Accordingly,          
PRC is thought to support “configural visual       
representations”, enabling subjects to perform “complex”      
visual discrimination tasks that rely on configural properties        
of objects (Barense et al. 2007). In line with PMT, patients           
with perirhinal lesions have shown deficits on tasks        

designed to assess PRC’s role in perception (Lee et al. 2005,           
Barense et al. 2007). By contrast, in other work, PRC          
lesioned patients are unimpaired on similar visual       
discrimination tasks (Buffalo et al. 1998, Levi et al. 2005,          
Knutson et al. 2013), leading some to aruge that observed          
deficits reflect memory impairment. Unfortunately, reliance      
on informal, descriptive accounts of stimulus properties       
(e.g. visual "complexity," "feature ambiguity," or      
"high-level" perceptual demands) have made it difficult to        
compare results across experiments.  

We begin by formalizing a null model of PRC function in           
accordance with PMT. As subjects with focal lesions to         
PRC still have an intact VVS, we suggest that visual          
discrimination behaviors of lesioned subjects should reflect       
those discriminations that are supported by the VVS. In         
particular, we should expect PRC-lesioned behavior to rely        
on Inferior Temporal cortex (IT) when performing object        
discrimination tasks. If a visual discrimination task is “IT         
computable,” we suggest that the task is nondiagnostic of         
PRC’s role in perception, as no perceptual processing        
beyond the VVS is necessary. Moreover, if PRC plays a role           
in perception, then PRC-intact control subjects should be        
able to perform non-IT computable visual discriminations;       
PRC-related deficits would only be evident for these tasks.  

Methods 

To implement this formalization of PMT, we borrow from         
a model class that makes quantitative predictions about        
neural activity within the primate visual system:       
task-optimized convolutional neural networks (CNNs).     
Given an image as input, these models largely recover the          
response patterns observed across the VVS (Yamins et al.         
2014, Schrimpf et al. 2018). For simplicity, we refer here to           
a single instance of this model class optimized to perform          
object recognition (VGG16: Simonyan & Zisserman 2014).       
As primate visual behaviors have been shown to track a          
linear readout of population-level neural representations in       
IT (Majaj et al. 2015) we use linear separability as our           
metric of IT computability.  
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We obtained stimulus sets from previously published       
studies (Buffalo et al. 1998, Barense et al. 2007, Stark &           
Squire 2000, Knutson et al. 2012) where human subjects         
with perirhinal lesions and PRC-intact controls performed       
visual discrimination tasks. Tasks involved detecting the       
“oddity” with a choice array of relatively similar objects.         
Stimuli from each experiment were originally formatted as        
concurrently presented choice arrays, with between 3 and 8         
objects on each screen. When appropriate, we used a         
kmeans clustering approach to identify the centroid of each         
object, otherwise the stimuli were split into quadrants of         
uniform size. Each stimulus screen was segmented into N         
object-centered images of equal size. We formated each        
experiment such that the inputs to the model reflect the          
stimuli shown to subjects--the visual statistics of each        
image, as well as the distribution of objects. For each trial,           
we passed these N trial images to the model and extracted           
feature vectors of length F from an intermediate layer,         
resulting in an FxN response matrix.  

Figure 1. Computational proxy for PRC-lesioned behavior: N objects in each trial are segmented              
and passed to a Convolutional Neural Network; responses are extracted from an intermediate layer,              
yielding an FxN array; pairwise correlations between objects result in an NxN covariance matrix; the               
lowest mean off-diagonal correlation is that trial’s predicted oddity; results are averaged across             
trials. 
 

We defined a protocol (Figure 1) to determine the oddity          
from each trial’s FxN array, extracted from the first fully          
connected layer. To operationalize linear separability within       
the model, we first used Pearson’s correlation as a uniform          
linear readout, computing the covariance matrix between       
model responses to each item within a trial, resulting in an           
NxN array. We identified the item with the lowest mean          
off-diagonal covariance as the oddity. If the resulting        
model-selected oddity matched the ground truth, then that        
trial was classified as correct. This was repeated for each          
trial, resulting in an average accuracy for each experiment.  

Results 
First, this analytic approach identified published stimulus       

sets that are nondiagnostic of PRC’s involvement in        
perception: Stimuli are perfectly separable in the model (e.g.         
model accuracy of 100%) and, by proxy, should not require          
visual processing beyond the VVS. This includes stimuli        
from studies on both sides of the debate (Knutson et al           
2012, Experiment 2 in Barense et al. 2007). PRC-lesion         
deficits (or lack thereof) on these tasks may be for reasons           
unrelated  to the perceptual demands placed on PRC. 

Second, we observed a striking correspondence between       
PRC-lesioned patient and model performance (r=.80). We       
analyzed ten visual discrimination experiments from two       
studies, where each study has experiments with putatively        
PRC-relevant and -irevelant stimuli. After computing the       
model accuracy for each experiment, we standardized       

results into a common metric space, which is agnostic to          
stimuli used, the number of items in the choice array, the           
number of trials, etc., across all experiments, we computed         
the correlation between model performance and      
PRC-lesioned patients (Figure 2).  

 
Figure 2. Correspondence between model and PRC-lesioned behavior. Solid dots along the            
diagonal suggest the model predicts the behavior of PRC-lesioned patients across experiments.            
While patient and control behaviors are well predicted by the model in Stark et al. 2000, the model                  
poorly predicts control behavior in Barense et al. 2007. This lack of correspondence is driven by                
“high feature ambiguity” conditions that require putatively PRC-dependent representations.  

 

Finally, we note a qualitative divergence between model        
and control behaviors within these two studies. In Stark et          
al. (2000) model performance was well matched with        
control as well as lesioned behaviors (r = .77 and .93,           
respectively). For Barense et al. (2007), the model was far          
worse at predicting control relative to lesioned behavior        
(r=.28 and .89, respectively). The lack of correspondence        
was driven by the “high feature ambiguity” conditions,        
designed to rely on representations putatively unique to        
PRC. For these experiments, controls significantly      
outperformed model behavior, as well as lesioned subjects        
(Figure 2; open blue squares, upper left quadrant).        
PRC-lesioned subject and control behaviors diverge only       
when experimental stimulus sets are not IT computable, as         
determined by our computational approach. 

Summary 

We have leveraged computational and meta-analytic      
approaches to formalize the role of the MTL in perception.          
With this formalization, we suggest that not all existing         
experimental stimulus sets are diagnostic of the role that         
PRC may play in perception. When a stimulus set is “IT           
computable” it should not require perceptual processing       
beyond the VVS. Consequently, a lack of impairment for         
PRC-lesioned patients in these tasks would be expected,        
given that they still have an intact VVS. Additionally, across          
ten visual experiments, we have demonstrated a       
correspondence between the model and human subjects in a         
PRC-lesioned state. Critically, it appears that the behavior        
of PRC-lesioned and -intact subjects only diverges when a         
visual discrimination task is not IT computable, as indicated         
by the model. These results offer tentative support for the          
PMT, as the debate is currently construed, and suggest that          
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theoretical disagreements may be due to differing perceptual        
demands across experiments.  
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