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Abstract 
Understanding how the visual system conjunctively 
codes color and shape has long fascinated cognitive 
psychologists, cognitive neuroscientists and 
neurophysiologists. Recent developments in 
convolutional neural networks (CNNs) provide us with an 
excellent opportunity to examine how color and shape 
conjunctions may be coded in an artificial, feedforward 
system only trained to perform object recognition. To 
determine whether CNNs encode color and shape 
independently or in an interactive manner, we used 
representational similarity analysis to characterize the 
responses of Alexnet to a collection of 540 different 
objects, each presented in 36 different colors. We found 
that whereas lower layers of Alexnet encode colors in a 
similar manner across different objects, in higher layers 
the color spaces associated with different objects are 
more distinct. Interestingly, the similarity between the 
color spaces of different objects was only weakly 
(though significantly) associated with the objects’ shape 
similarity. These results demonstrate that rather than 
being encoded in an orthogonal manner, color and shape 
processing becomes increasingly interactive in higher 
layers of a CNN, suggesting that feedforward networks 
optimized for object recognition will naturally develop 
conjunctive coding of color and shape.  

Keywords: color; shape; convolutional neural nets; 
conjunctive coding; binding 

Introduction 

The human visual system must successfully process 
different features, like color and shape, that each 
impose their own unique processing demands, such as 
inferring color constancy or computing 3D shape. At the 
same time, it must successfully bind together different 
features belonging to the same object, raising the 
question of what sort of overall processing architecture 
might be able to perform these complementary 
demands of both segregating and integrating the 
processing of different features. 

Influential accounts of visual feature binding in the 
human brain have argued that whereas single features 
are encoded in a fast, bottom-up, parallel manner, 
successfully binding different features into objects 
requires focused spatial attention (Treisman & Gelade, 
1980). That said, several lines of behavioral evidence 
suggest that in certain cases, feature conjunctions can 
be encoded in a fast, bottom-up manner, such as for 
familiar color/shape conjunctions (Rappaport, 
Humphreys, & Riddoch, 2013; Reavis, Frank, 
Greenlee, & Tse, 2016). It remains unknown what 
neural mechanisms could undergird these patterns of 
behavioral data. Some theories of color/shape binding 
emphasize the role of feedback or recurrent 
connections in feature binding, whereas others focus on 
the role of bottom-up computations (Riesenhuber & 
Poggio, 1999; Singer, 1999; Zhang et al., 2014).  

In order to better understand how color and shape 
processing might interact in a purely feed-forward 
architecture, excluding any recurrent or feedback 
processing, we examined the responses of Alexnet, a 
convolutional neural network (CNN) solely optimized for 
object recognition, to a collection of object stimuli that 
were each presented in several different colors 
(Krizhevsky, Sutskever, & Hinton, 2012). While the 
input to Alexnet’s first layer consists of an image with 
separate RGB channels, the model has no built-in 
constraints on how color is subsequently processed by 
the network, allowing us to examine what color 
representations naturally emerge as a byproduct of 
training the network to perform object recognition. In 
particular, we used representational similarity analysis 
(RSA) to characterize how color is encoded for different 
shapes across different layers of Alexnet (Kriegeskorte, 
Mur, & Bandettini, 2008). To the extent that color and 
shape are encoded orthogonally in CNNs, then the 
pattern of dissimilarities between different colors should 
be invariant across different objects; conversely, if color 
encoding is contingent on shape coding, then the 
pattern of color dissimilarities should vary among 
different objects. We additionally examined whether 
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differences in the color spaces for different objects are 
predicted by differences in the shape representations of 
these objects in different layers. 

Stimuli 

As stimuli, we used a stimulus set consisting of 540 
different objects from Brady et al. (2013). Following the 
manipulation employed in a recent neurophysiology 
study (Chang, Bao, & Tsao, 2017), to vary the color in 
these stimuli, we converted the RGB images to the LUV 
color space, which is designed such that equally similar 
stimuli in this color space are also equally perceptually 
discriminable. We then adjusted the stimuli such that 
they all had equal mean luminance and saturation, and 
had 36 evenly spaced hues comprising a circle in color 
space. We constructed the stimuli using two different 
methods. In the first method, we retained the original 
textures of the images; in the other, we filled each 
image with a uniform color, forming a “silhouette” for 
each object. We performed this manipulation to 
examine whether our results depend on the internal 
texture of the objects, or only their overall shape 
envelope. Figure 1 depicts examples of these stimuli. 

 

Figure 1. Six (out of 36) example colors of one 
example stimulus, for the two stimulus types. 

Analyses and Results 

The stimuli were run through Alexnet, using the Pytorch 
implementation (Paszke  et al., 2017). We then 
extracted the unit activations from each layer of Alexnet. 
We retained the spatial dimensions of the various layers 
instead of averaging across space within each kernel in 
order to better approximate the methods used in neural 
data analysis, which have no clear analogue of 
performing kernel-wise averaging. After flattening these 
activations into 1D vectors, we computed a 
representational dissimilarity matrix (RDM) for the 36 
different colors of each of the 540 objects, for each layer 
of the network. We then computed a second-order RDM 
(540*540) for each layer that measures the correlations 
in the color spaces across the different objects (Figure 
2), and examined how the distribution of correlation 
values in this matrix evolve across the layers of the  

 

Figure 2. For each layer, color RDMs were computed 
for each object (only 3 of 36 colors shown) to measure 
its color similarity space. These RDMs were then 
correlated across objects to measure the similarity of 
the color representations for different objects (only 3 of 
540 objects shown). 

 

 

Figure 3. Distribution of cross-object color space 
similarities across layers. Error bars show SD.  

network (Figure 3). The correlations in the color spaces 
among different objects decline over the course of the 
network, suggesting that color and shape are 
processed in an increasingly interactive manner in 
Alexnet. These results held for both the textured stimuli 
and the silhouette stimuli. 

We then examined whether objects with a similar 
color space at the beginning of the network also had a 
similar color space at the end of the network. To do this, 
we correlated the second-order RDMs from the 
previous analysis between layers conv1 and fc2, finding 
only a modest, though significant, correlation (r = .17). 
This suggests that the differences between objects with 
respect to their color spaces evolve over the course of 
the network, with the color spaces of some object pairs 
converging, and others diverging in higher layers.  
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To what extent do these differences in color spaces 
between objects reflect differences in the shape 
representations for these objects? In other words, do 
objects with similar shapes tend to have similar color 
representations? To answer this, for each layer we 
extracted the activations to grey-scale versions of all the 
object stimuli, and constructed an RDM capturing the 
differences in non-chromatic shape between objects. 
For each layer, we then correlated this RDM with the 
second-order RDM containing the differences in color-
space between different objects. This allows us to 
examine whether objects with more different shape 
representations also encoded color in a more different 
manner. Across the layers, we found modest, though 
significant, correlations ranging from .1 to .3, 
suggesting that differences in shape representation 
between different objects only partially track differences 
in their color space representation.  

Discussion 

Collectively, our results suggest that rather than 
encoding color and shape in an orthogonal manner, 
CNNs optimized for object recognition naturally 
represent these features in an interactive manner, such 
that color coding varies across different shapes and 
varies across the different CNN layers. These results 
therefore represent an existence proof that conjunctive 
coding of color and shape can naturally arise in the 
absence of feedback or recurrent mechanisms in a 
CNN trained only for object recognition.  
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