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Abstract

Deep feedforward neural network models of vision dom-
inate in both computational neuroscience and engineer-
ing. However, the primate visual system contains abun-
dant recurrent connections. Recurrent signal flow en-
ables recycling of limited computational resources over
time, and so might boost the performance of a physi-
cally finite brain. In particular, recurrence could improve
performance in vision tasks. Here we find that recurrent
convolutional networks outperform feedforward convolu-
tional networks matched in their number of parameters in
large-scale visual recognition tasks. Moreover, recurrent
networks can trade off accuracy for speed, balancing the
cost of error against the cost of a delayed response (and
the cost of greater energy consumption). We terminate
recurrent computation once the output probability dis-
tribution has concentrated beyond a predefined entropy
threshold. Trained by backpropagation through time, re-
current convolutional networks resemble the primate vi-
sual system in terms of their speed-accuracy trade-off be-
haviour. These results suggest that recurrent models are
preferable to feedforward models of vision, both in terms
of their performance at vision tasks and their ability to
explain biological vision.
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Introduction

Neural networks have a long history as models of biological vi-
sion and the recent success of deep neural networks (DNNs)
in computer vision has led to a renewed interest in neu-
ral network models within neuroscience (Kriegeskorte, 2015;
Yamins & DiCarlo, 2016; Kietzmann, McClure, & Kriegesko-
rte, 2019). Contemporary deep neural networks not only per-
form better in machine learning challenges but also provide
better predictions of neural and behavioural data than previ-
ous, shallower models (Yamins et al., 2014; Khaligh-Razavi &
Kriegeskorte, 2014; Güçlü & van Gerven, 2015).

In terms of computational mechanisms, artificial DNNs di-
verge largely from their biological counterpart. While some
degree of abstraction is necessary when modelling complex
systems such as the brain, it is important to understand
which features of biology are essential to the computations
as reflected in task performance (Kietzmann, McClure, &
Kriegeskorte, 2019).

One area that has received particular interest within ma-
chine learning and neuroscience has been the role of recur-
rence. Although core object recognition has typically been
viewed as a feedforward process in primates, it is known
from neuroanatomy that the visual system is highly recurrent
(Felleman & Van Essen, 1991; Sporns & Zwi, 2004). Func-
tional evidence also indicates that recurrent computations are
utilised during object recognition (Freiwald & Tsao, 2010; Ki-
etzmann, Spoerer, et al., 2019; Kar, Kubilius, Schmidt, Issa, &
DiCarlo, 2019).

Results
We trained a range of deep convolutional neural networks
on two large-scale visual object-recognition tasks, ImageNet
(Russakovsky et al., 2015) and ecoset (Mehrer, Kietzmann, &
Kriegeskorte, 2017). The networks trained included a feed-
forward network, referred to as B (bottom-up only, layers: 7,
feature maps: [96, 128, 192, 256, 512, 1024, 2048]; kernel
size: [7, 5, 3, 3, 3, 3, 1]), and a recurrent network, referred to
as BL, with bottom-up and lateral recurrent connections (re-
current connections within a layer). We focus our investigation
on lateral connections, which constitute a form of recurrence
that is ubiquitous in biological visual systems and proved more
powerful than top-down recurrent connections on simple tasks
in earlier work (Spoerer, McClure, & Kriegeskorte, 2017).

The recurrent networks are implemented by unrolling the
computational graph for a finite number of time steps. The
model is trained to produce a readout at each time step, which
predicts the category of the object present in the image. We
defined the prediction of the model as the average of the cat-
egory readout across all time steps, referred to as cumulative
readout hereafter.
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As the addition of recurrent connections adds more param-
eters to the models, we use three larger feedforward architec-
tures as control. The first of these architectures (B-K) uses a
larger kernel sizes ([11, 7, 5, 5, 5, 5, 3]). Second, we included
control models with a larger number of features in each layer
(B-F features: [192, 256, 384, 512, 1024, 2048, 4096]). Fi-
nally, we trained a deeper feedforward network (B-D), approx-
imately matching the number of parameters to BL by doubling
the number of layers (feature maps: [96, 96, 128, 128, 192,
192, 256, 256, 512, 512, 1024, 1024, 2048, 2048]; kernel
sizes: [7, 7, 5, 5, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1]).

Recurrent networks outperform parameter-matched
feedforward models
The recurrent models performed best on both large scale ob-
ject recognition data sets, outperforming both the baseline
feedforward model, B, and the parameter-matched controls
(Table 1). BL showed a performance benefit of over 1.5 per-
centage points relative to the best feedforward model, B-D, on
both tasks.

Table 1: Accuracies on held-out data and number of pa-
rameters for each model

models ImageNet ecoset parameters

B (baseline) 58.42% 64.25% 11.0 million

B-K 56.46% 62.81% 39.8 million

B-F 60.34% 66.54% 40.0 million

B-D 62.68% 68.36% 28.9 million

BL (recurrent) 64.37% 69.98% 28.9 million

The number of parameters are calculated for ImageNet
models, ecoset models have slightly fewer parameters due to
the fewer categories in the final readout layer.

Both B-D (deeper network) and B-F (more feature maps)
outperformed the baseline model, B. B-K had a worse test
accuracy than the baseline model, suggesting that the in-
crease in kernel size in our models lead to overfitting. Pair-
wise McNemar tests (Dietterich, 1998) showed all differences
in model performance to be significant (p ≤ 0.05, Bonferroni
corrected).

Single recurrent models span speed-accuracy
trade-offs of multiple feedforward models
Next, we compared the computational efficiency of feedfor-
ward and recurrent networks by measuring the accuracy as a
function of the number of floating-point operations. The num-
ber of floating-point operations of a model reflects the energy
cost, which might be related to the metabolic cost in a biolog-
ical system. A feedforward model has a fixed computational
cost, whereas a recurrent model can flexibly terminate com-
putations when confidence passes a threshold, trading off ac-
curacy for speed.

For the recurrent models, we used cumulative readouts
with entropy thresholding. The network runs until the entropy
of its cumulative readout falls below a predefined threshold.
The final cumulative readout is then taken as the network’s
prediction. This effectively uses an internal estimate of the
networks’ confidence in the decision and terminates once a
desired confidence level is reached. Entropy thresholding
closely corresponds to theories of biological decision making,
where evidence is accumulated until it reaches a bound (Gold
& Shadlen, 2007).

When comparing the recurrent models to feedforward mod-
els we see a remarkable correspondence between the two
classes of architecture (Fig. 1): The accuracy of the recur-
rent models as a function of the computational cost passes
through the points describing the feedforward control models.
This means that the different architectures yield similar accu-
racy for a given computational budget. However, the compu-
tational costs and accuracies of the feedforward models are
fixed, whereas the recurrent models can be left to compute
longer so as to achieve higher accuracies.

These results suggest that recurrent models perform sim-
ilarly to feedforward models when matching the number of
floating-point operations. This is surprising given that recur-
rent networks operate under the additional constraint of hav-
ing to use their weights across multiple time steps. The grace-
ful degradation of performance of recurrent models when the
computational cost is limited may depend on training with a
loss function that rewards rapid convergence to an accurate
output.

Overall our results suggest that we can use a single recur-
rent network to span the space of speed-accuracy trade-offs
covered by multiple feedforward networks. Furthermore, us-
ing the same network we can achieve a higher performance
than all of the parameter-matched feedforward networks by
running more recurrent computations.

Network reaction times predict human recognition
uncertainty

Recurrent connections endow a model with temporal dynam-
ics. If the recurrent computations in a model match those of
the human brain during object recognition, then model be-
haviour should be predictive of human behaviour. For ex-
ample, images that require the model to perform more ex-
tended recurrent computations for accurate recognition should
be more challenging also for humans.

To test this hypothesis we used data from an object cat-
egorisation task where humans had to categorise 1,500
greyscale images as either animate or inanimate (Eberhardt,
Cader, & Serre, 2016). To quantify the extent to which images
that were more consistently recognised by humans were more
rapidly recognised by the models, we computed a decision un-
certainty index D based on the proportion correct, PC, across
humans. D was defined as 0.5− |0.5−PC|. This metric is
largest when humans are most inconsistent in their decision
making (if PC = 0.5 then D = 0.5), and it is smallest when all
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Figure 1: Relationship between computational cost and performance. The recurrent models are assessed using a range
of entropy thresholds, with the computational cost corresponding to the mean number of floating-point operations used across
the test set to reach the given entropy threshold. The computational cost for feedforward models is the number of floating-point
operations in a single pass through the model. Performance is assessed based on held-out data.

decisions across trials are the same (if PC = 1.0 or PC = 0.0
then D = 0.0).

We fitted ImageNet and ecoset trained models to these hu-
man data and tested them using cross-validation across im-
ages. Network reaction times were extracted by training an
additional readout for the animacy discrimination task and fit-
ting an entropy threshold to maximise the correlation with hu-
man uncertainty. We then tested the fitted models by predict-
ing human uncertainty for different images via crossvalidation
(using Spearman correlation to measure prediction accuracy).
As a control, we ran the same fitting procedure using a net-
work with randomly initialised weights. As an additional con-
trol, we shuffled the images within each category before fitting
the entropy thresholds and recomputing the network reaction
times.

Our results show that reaction times obtained from recur-
rent networks significantly predicted human decision uncer-
tainty (Fig. 2). Furthermore, both networks outperformed a
randomly initialised network that was fitted using the same
procedure (two-tailed paired permutation test, p < 0.01).
Overall, images for which our recurrent networks took longer
to converge were less consistently recognised by humans.

Conclusions
The results described here show that recurrent architectures
can outperform parameter-matched feedforward control mod-
els on naturalistic vision tasks. We also demonstrated that
a single recurrent network can span the space of speed-
accuracy tradeoffs covered by multiple feedforward models.

Not only did the recurrent architectures have a practical bene-
fit, but they were also able to predict human object recognition
behaviour.

The work described here adds to a growing body of re-
search into RCNNs as models of object recognition (Liang &
Hu, 2015; Liao & Poggio, 2016; Spoerer et al., 2017; Nayebi
et al., 2018; Kubilius et al., 2018; Kietzmann, Spoerer, et al.,
2019). These models provide us with a white box, a vision sys-
tem that can be observed from input to behavioural response.
By understanding how these models perform object recogni-
tion we might shed some light on the elusive role of recurrent
processing within biological vision.
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