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Abstract
We present a model of how working memory (WM) and
episodic memory (EM) interact in the n-back task. Con-
trary to previous models in which information is ac-
tively maintained in WM, our model posits that informa-
tion about previous stimuli is retained exclusively in EM.
Unlike WM-based active maintenance, which has limited
maintenance capacity, EM-based storage has unlimited
storage capacity but is subject to proactive interference.
Using the model we show that benchmark phenomena or-
dinarily attributed to use of a limited-capacity WM sys-
tem (the set size effect and the lure interference effect)
can also arise in a model with no such maintenance con-
straints.
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Introduction
The n-back task is one of the most commonly used tasks for
indexing WM function. In this task, a stream of stimuli is pre-
sented and, for every stimulus, the participant must indicate
whether the current stimulus matches the stimulus that oc-
curred n-back in the sequence. The two most robust phe-
nomena observed in the context of this task are (i) the set-
size effect: the larger the value of n, the lower the accuracy
and higher the reaction times; and (ii) the lure interference
effect: the presence of a matching stimulus in the recent non-
target past (i.e. when the current stimulus matches the one
n-1-back) increases the false alarm rate (see Oberauer et al.,
2018). Note that performance of this task requires the coordi-
nation of several cognitive operations: the identity and ordinal
position of the last n items must be retained, the current item
must be compared to the one in the n-th position ago, and
then the collection of items held in memory and their positions
must be updated prior to the next comparison operation. De-
spite the rich empirical literature on this task, we are aware of
only two mechanistic models that address how it is performed
(Juvina & Taatgen, 2007; Chatham et al., 2011). This relative
dearth of modeling attempts means the mechanistic underpin-
nings of the above mentioned phenomena remain unclear.

Juvina and Taatgen (2007) suggested participants can use
two different strategies to perform the n-back task that they im-
plemented in two corresponding ACT-R models. In the high-
control model, a window of size n is actively maintained by
a rehearsal process, and the ordinal position of each item

is encoded by the item’s position in this actively maintained
window. However, because this model was developed within
ACT-R, a symbolic framework, it does not address the neural
mechanisms by which information about ordinal position and
information about item identity are bound together in WM. To
address this, Chatham et al. (2011) showed that a biologically
plausible connectionist model of the prefrontal cortex (Frank,
Loughry, & O’Reilly, 2001) successfully learned to perform
the n-back task, and exhibited key features of behavioral and
neural observations. Critically, like the high-control model of
Juvina and Taatgen (2007), the prefrontal cortex based model
of Chatham et al., (2011) relied on mechanisms that learned
to actively maintain representations of stimuli and ordinal posi-
tion in WM slots that served to bind these pieces of information
together for each stimulus.

Both of the models discussed above align with the common
assumption that the n-back task relies on the active mainte-
nance of information in WM (Oberauer et al., 2018), and there-
fore that constraints on performance in the n-back task reflect
the capacity limitation of WM. Consider for example the set
size effect introduced above (Jonides, Schumacher, Smith, &
Lauber, 1997). This is phenomenon, replicated across materi-
als and tasks, is widely assumed to reflect the limitation in WM
capacity (see Oberauer et al., 2018). This intuition is included
in both the ACT-R high control model (Juvina & Taatgen, 2007)
and the prefrontal network based model Chatham et al. as
a limit in the number of slots available to WM. However, as
noted above, the n-back task engages several constituent op-
erations (e.g., encoding, maintenance, updating, and match-
ing), any or all of which could be responsible for the observed
effects.

One alternative to the capacity limitation account is the
ACT-R low-control model proposed in Juvina and Taatgen
(2007). In contrast to the active maintenance accounts, stimuli
in this model are not actively maintained in a rehearsal window
where ordinal position is encoded by slots. Instead, along sim-
ilar lines to the time-tag account of Yntema and Trask (1963),
each item is stored along with a time-tag that specifies the mo-
ment of encoding. To the extent that the memory component
of this model does not interfere with ongoing processing, this
account aligns with the idea that memories are being stored
in EM instead of actively maintained in WM. However, unlike
the high-control strategy which was implemented in Chatham
et al. (2011), it remains unclear whether and how time-tags
could be neurally implemented in a manner consistent with
EM, and how such a model would give rise to behavioral phe-
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nomena such as the set-size effect discussed above. Here we
sought to address this theoretical gap.

Methods

Model Overview

The input to the model consists of two subfields, a stimulus
subfield and a context subfield (together referred to as a per-
cept). The model consists of two parts, an EM module that
stores percepts experienced in the past, and a WM module
that is trained to judge whether the current stimulus matches
the stimulus that occurred n trials ago. On each trial the model
observes a percept, which triggers a similarity based retrieval
process from EM. The output of this process is provided along
with the current percept to WM. WM then sequentially pro-
cesses the retrieved memories, to assess whether or not the
current stimulus matches the one occurring n trials back. Af-
ter WM issues a response, the current percept is stored in EM
and a new trial begins.

Model Details

Episodic Memory Overview The EM module aligns with a
rich tradition of context-based models that address the tempo-
ral organization of free recall (Howard & Kahana, 2002; Polyn,
Norman, & Kahana, 2009). In these models the retrieval pro-
cess is mediated through associations between the item being
retrieved and the context in which that item was encoded. Be-
cause this contextual representation drifts gradually over time,
items that were observed together during encoding are also
more likely to be retrieved together. Along similar lines, in the
current model items are encoded into EM along with a drift-
ing context representation. As will be elaborated below, this
context representation serves to constrain recall to the most
recent items, and to allow the model to recover serial order
information.

Model Input On each trial, the model observes an input
vector, composed of (i) a stimulus subfield and (ii) a context
subfield. (i) The stimulus subfield of the percept is a normal
random vector drawn from a finite set generated at the be-
ginning of the experiment, and it corresponds to the stimulus
(e.g. a the picture of a face or a string of letters) presented to
participants performing the n-back task. To implement (ii) the
context representation, the context subfield is initialized to the
zero vector and, on each trial, a delta drawn from N(1,0.5) is
added. This slowly drifting context subfield implements the in-
tuition that the brain has representations that drift slowly over
time, and that these representations serve to contextualize
and organize retrieval processes (Howard & Kahana, 2002;
Polyn et al., 2009). In the present model, this slowly drifting
context representation also serves the additional role of en-
coding temporal information from which serial order can be
recovered in the service of performing the n-back task.

Retrieval Upon the presentation of a percept, the model
queries EM for similar percepts that occurred on past trials.
Retrieval from EM occurs through similarity based look-up,

which approximates the process of pattern completion as-
sumed to occur in the hippocampus (Marr, Willshaw, & Mc-
Naughton, 1991). First, the similarity between the current per-
cept and the percepts stored in EM is computed. Second, the
percepts are sorted from highest to lowest similarity. Finally,
the EM retrieval process returns the percepts that exceed an
established similarity threshold.

Working Memory The output of EM’s retrieval is then se-
quentially processed, along with the current percept, by WM.
Notice that, in this model, WM serves no active maintenance
function. Instead, the function of WM in this model is to (i)
use temporal information contained in the context represen-
tation to compute ordinal information, (ii) identify matches be-
tween the current stimulus and stimuli retrieved from EM. To
implement these functions, we used a long short term memory
(LSTM; Hochreiter and Schmidhuber, 1997). On each trial,
the LSTM is sequentially provided with the percept of the cur-
rent trial followed by a variable length sequence of percepts
retrieved from EM. After observing this input sequence, the
LSTM is optimized to respond using one of two softmax out-
put units: yes if the stimulus subfield of the n-back percept
matches the stimulus subfield of the current input, and no oth-
erwise.

Model training and evaluation An important desideratum
for our model was the ability, like humans, to perform the n-
back with arbitrary stimuli. Toward this end, the stimulus field
of each input was random vectors drawn from a standard nor-
mal distribution. To keep the model general with respect to
stimulus input, the set of random vectors from which stimuli
were drawn were re-randomized every 10 trials, but during
training and test. Similarly, although the context drift was al-
ways drawn from N(1,0.5), after every 10 trials this process
was reset and a new draw was generated. After being trained
with this regime, the model is evaluated on new stimulus sets
and context drifts.

Results

Set size effect

The set size effect refers to the degradation in performance
as n increases (Jonides et al., 1997). It is largely assumed
that this reflects reliance on the active maintenance of stimu-
lus information in capacity-limited WM (Oberauer et al., 2018).
However, in the current model, stimulus information is not ac-
tively maintained in WM; rather, it is stored in EM which has
no such capacity constraint. Nevertheless, it exhibits a quali-
tatively similar effect of set size. When comparing the model
on the 1, 2 and 3-back versions of the task, accuracy is high-
est for the 1-back and lowest for the 3-back (Figure 1A). This
occurs because the ability of the model to estimate ordinal
position degrades for longer temporal distances: because our
model relies on a noisily drifting context representation to esti-
mate temporal distance, this noise accumulates over time and
thereby limits the model’s ability to differentiate temporal dis-
tances occurring further in the past. Therefore, the present
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Figure 1: A) Set size effect: B) Lure interference effect C) Proactive interference on later trials especially in cases where stimuli
repeat (red) compared to cases with fewer non-target repetitions (green).

model proposes the alternative explanation that the set size
effect arises in the context of the n-back task because es-
timates of longer temporal distances suffer from lower reso-
lution. Furthermore, as has been empirically observed, the
degradation in performance between 1 and 2-back is larger
than between 2 and 3-back (Cohen et al., 1997).

Proactive interference

One of the characteristic signals of EM usage is proactive in-
terference (PI): when information that is lingering in memory
from the past interferes with ongoing processing. One pos-
sible indication that PI is happening is if performance is de-
graded on later trials compared to earlier trials (Fig 1C). In the
model this happens because – at the beginning of the exper-
iment – EM is empty, and since the model reverts to a ”no
match” response if nothing is retrieved from EM, WM can rely
on the heuristic that if nothing is retrieved from EM, then the
current trial is a trivial case of ”no match”. However as the
experiment proceeds, and more items are stored in EM, there
will be more potential candidates to be retrieved, and so WM
will have to sift through a longer list, thereby increasing the
chance for a false alarm. Note that, in the real world, EM is
not empty at the start of an experiment; however, one can
reasonably expect that the number of task-relevant memories
stored in EM (i.e. from a similar context, with similar stimuli)
will be relatively small, so the general point holds.

To test the model’s susceptibility to PI, we compared perfor-
mance on trials with high versus low PI. Since EM retrieval re-
lies on similarity based look-up, increasing the similarity of the
content that is stored in EM will increase the number of items

that are returned by the retrieval process. Therefore, to ma-
nipulate PI, we compared high PI trials where fewer stimulus
items reoccurred (e.g. A A B C B A) versus trials where non-
target stimulus items were trial unique (A B A C D E). Con-
firming the prediction that the model is sensitive to PI, degra-
dation in performance was more pronounced for the high PI
compared to the low PI condition (Figure 1C).

Lure interference

Apart from the set-size effect, another highly robust phe-
nomenon observed in the context of the n-back task is the
lure interference effect. This effects refers to a decrease in
accuracy when the current stimulus matches one of the stim-
uli occurring in the recent non-target past. This effect is es-
pecially pronounced when the current stimulus matches the
one in the n-1 position. To investigate whether our model was
sensitive to this effect, we looked at the model’s performance
on the 3-back task for trials in which the last probe matched
the one n-1-back. As observed empirically, the model’s ac-
curacy was worse for these lure trials compared to positive
(match) and negative (no lures) controls (Figure 1B). This also
arises in the model as a consequence of PI. Because EM re-
trieval is based on the similarity between the current percept
and stored percepts, lure probes will have the effect of elicit-
ing more EM retrievals from occurring in the non-target past,
thereby increasing the chance that WM will false alarm.

Discussion
In sum, there are two key features that distinguish our model
from standard accounts. First, the information held in mem-
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ory is not maintained in an active state and as such does not
consume limited WM resources. Rather, consistent with an
EM-based storage, there are no capacity limitations and infor-
mation is held in a latent state until retrieved. However, since
memory traces in EM persist indefinitely, the growth of infor-
mation stored from the past has a propensity to proactively
interfere with the present. Second, the present model differs
from slot-based accounts with regard to how order informa-
tion is encoded and processed. Instead of specifying order
information by the slot in which the stimulus is encoded, order
information is computed at retrieval from the temporal infor-
mation contained in the slowly drifting context representation.
This combination of mechanisms obviates the need for an op-
eration that explicitly updates the maintenance window; rather,
that emerges from the encoding and retrieval processes of
time-stamped information in EM, and the ability of the LSTM
to learn to estimate and evaluate temporal information from
the drifting context.

Although it is often acknowledged that WM interacts with
a long-term store largely analogous to the EM component in
our model (for a review, see Nelson, 2017), previous accounts
have not implicated this component in producing the set-size
effect. Instead, this behavioral benchmark is usually taken as
evidence that this task relies on active maintenance of stim-
uli in WM (Oberauer et al., 2018; Juvina & Taatgen, 2007;
Chatham et al., 2011). However, even though past items are
not actively maintained in WM in the current model, it still pro-
duces the set-size effect. Here, this effect arises not as a
consequence of WM’s capacity for active maintenance, but as
a consequence of the characteristics of the long-term storage
(EM) and its interactions with WM. As such, the present model
shows that – under certain assumptions about the operating
characteristics of the long-term storage (gradually drifting con-
text and susceptibility to proactive interference, both of which
are well-justified by the episodic memory literature; Norman,
Detre, and Polyn, 2008) – qualitatively similar behaviors can
arise in the absence of constraints on active maintenance.

Importantly, this EM-based account is not mutually exclu-
sive with a WM active maintenance or slot-based accounts –
people may use either or a mixture of both strategies. Going
forward, it will be important to refine the differential predictions
of the two accounts, thereby allowing us to diagnose which
strategy is being used in a particular situation. One promising
route relates to the PI phenomena discussed earlier: while
models that rely on WM will show some PI due to lingering
recurrent activity (e.g., Chatham et al., 2011), an EM-based
model will show a greater rise in PI over time, due to the per-
sistent nature of EM traces. Another promising route relates
to manipulations of temporal context: The EM-based model
predicts greater sensitivity to disruption by manipulations that
affect the context drift (e.g., semantic category changes; Polyn
et al., 2009) than a slot-based WM model.
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