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Abstract: 

Humans often violate the principles of decision 
rationality. For instance, they may choose fish over 
steak, steak over salad, but salad over fish, 
disclosing thus inconsistent preferences. Such 
choice inconsistencies are well-established, but 
their mechanistic basis remains elusive. We have 
previously attributed choice inconsistencies to a 
selective integration process: In a protracted 
decision-making task (trials of 5-10s) requiring the 
accumulation of two simultaneously presented 
streams of payoff samples, momentarily higher 
payoffs were accumulated with stronger weight. 
Here, we hypothesized that this selective 
integration process may be realized via competitive 
interactions between incoming payoffs, mediated 
via GABAergic inhibition in cortical circuits. We 
tested this hypothesis in humans through a 
combination of the task above with 
magnetoencephalography (MEG) and 
pharmacological boost of GABAergic transmission 
(lorazepam). The drug amplified MEG markers of 
cortical inhibition as well as behavioral signatures 
of selective integration. Critically, the drug did not 
change the time-constant of payoffs accumulation. 
We conclude that GABAergic cortical inhibition 
mediates selective integration and decision 
irrationality. In the protracted decisions we 
examined, GABAergic inhibition exerts its effect 
primarily on the input rather than the accumulation 
stage, distinct from current neural circuit models of 
perceptual evidence accumulation.  
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evidence accumulation; GABA 

Background 

Humans often violate the principles of rational choice 
theory. For instance, they may prefer A over B, B over 
C but C over A, disclosing thus inconsistent 
preferences. Such violations of decision rationality 
imply that the value assigned to an alternative is 
context-sensitive, being influenced by the properties of 
the other alternatives under offer. This context-
sensitivity has been recently attributed to a selective 
integration mechanism: In protracted choices requiring 
the accumulation of temporally discrete 
psychophysical or numerical samples, momentarily 
high-valued sampled are accumulated with a higher 
gain (Tsetsos, Chater, & Usher, 2012; Tsetsos et al., 
2016). 

Selective Integration 
To account for this effect, we have developed a 
computational model, henceforth called selective 
integration model (Tsetsos et al., 2016). The model 
applies to decisions based on two sequences of 
inputs, presented simultaneously (Figure 1a). Two 
accumulators (𝑌",$) integrate the two sequences 
(𝑆",$	with 𝑆",(𝑡) denoting the value of sequence A at 
the discrete sample t) across time: 
𝑌"(𝑡) = (1 − 𝜆) ∙ 𝑌"(𝑡 − 1) 	+ 𝐼"(𝑡) + 𝜉 ∙ 𝜁"(𝑡) (1) 
	𝑌$(𝑡) = (1 − 𝜆) ∙ 𝑌$(𝑡 − 1) + 𝐼$(𝑡) + 𝜉 ∙ 𝜁$(𝑡)		(2). 
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In equations 1-2, t is the current discrete time-step (or 
sample), 𝜆 is the accumulation leakage, 𝐼",$	is the 
effective input to the accumulators, 𝜉 is the standard 
deviation of noise , and 𝜁",$	are standard Gaussian 
samples. The accumulators are initialised at 0 and at 
the end of the stimulus presentation (after the last 
sample at 𝑡 = 𝑇) a decision is made in favour of the 
accumulator with the higher accumulated value. The 
inputs to the two accumulators reflect the modified 
sequence values after the selective integration filter is 
applied:  
𝐼"(𝑡) = 𝜃5𝑆"(𝑡), 𝑆$(𝑡)6 ∙ 𝑆"(𝑡)	  (3) 
𝐼"(𝑡) = 𝜃5𝑆"(𝑡), 𝑆$(𝑡)6 ∙ 𝑆"(𝑡)	  (4) 
 
𝜃(𝑥, 𝑦) = 91			𝑖𝑓	𝑥 ≥ 𝑦

𝑤	𝑖𝑓	𝑥 < 𝑦               (5). 

Behavioral signatures of selective integration 

Between two Gaussian sequences with different 
variances and equal means, the selective integration 
model predicts a choice bias towards the more 
variable sequence (hereafter, the pro-variance bias). 
To illustrate, we assume for simplicity that the more 
variable sequence HV takes high (H) and low values 
(L) while the less variable sequence LV mid-range 
values (M): 𝐻𝑉 = {𝐻, 𝐿}   (6) 
	 						𝐿𝑉 = {𝑀,𝑀}   (7). 
Assuming no leak or noise, the accumulated values for 
the streams after the selective integration filter will be: 
𝑌EF = 𝐻 +𝑤𝐿 > 𝑌HF = 𝑀𝑤+𝑀, which holds for 𝑤 <
(𝐻 −𝑀) (𝑀 − 𝐿)⁄ . Given that the two sequences are  
generated via symmetric (Gaussian) distributions M is 
equidistant to H and L  and the pro-variance bias 
occurs for 𝑤 < 1, or in other words as long as the 
selective integration filter is active.  
     Secondly, between two sequences of equal mean 
value the selective integration model predicts a choice 

bias towards the sequence that wins in more samples 
(hereafter, the frequent-winner bias).  
𝐹𝑊 = {𝐻,𝑀, 𝐿}  (7) 
𝐼𝑊 = {𝑀, 𝐿, 𝐻}   (8). 
The accumulated values for the frequently-winning 
(FW) and infrequently-winning (IW) streams will be: 
𝑌LM = 𝐻 +𝑀 + 𝐿𝑤 > 𝑌NM = 𝑀𝑤 + 𝐿𝑤 +𝐻, which holds 
for 𝑤 < 1. 
Limitations of Selective Integration Model 

The pro-variance and frequent-winner bias are 
parsimoniously explained by the selective integration 
model. Both behavioral signatures are found in tasks 
requiring the accumulation of payoff or magnitude 
samples (Tsetsos et al., 2012; Tsetsos et al., 2016). 
The selective integration model predicts a tight positive 
correlation between both signatures but this correlation 
is negligible in behavioral data Additionally, the 
selective integration model is casted in algebraic 
terms, lacking biological realism.  

Extended Selective Integration Model 
 
We develop a new model that overcomes the above 
two limitations of the Selective Integration Model. In 
our new model, called extended selective integration, 
selective integration is mediated by a lateral inhibition 
mechanism at the input level. We replace equations 3-
5 with the following: 

𝐼"(𝑡) = 	
∫ PQ(R)SR
T
U

V
   (9) 

𝐼$(𝑡) = 	
∫ PW(R)SR
T
U

V
   (10). 

𝑋",$ reflect the activity of two input units. Variable P 
denotes the duration (in units of time) that a given pair 
of samples is presented for, and 𝑑𝑥 is a small time 
interval. The input units are initiated at 0, and their 
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Figure 1. Task schematic (a) and behavioral results in the placebo-controlled pharmacological study (b). Error 
bars correspond to 2SE. ***p<0.001, ** p<0.01, *p<0.05. 
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dynamics are governed by the following coupled 
differential equations: 
𝑑𝑋" = (−𝜅𝑋" − 𝛽𝑓(𝑋$) + 𝑆"(𝑡)𝑑𝑥  (11) 
𝑑𝑋$ = (−𝜅𝑋$ − 𝛽𝑓(𝑋") + 𝑆$(𝑡)𝑑𝑥  (12). 
    The input units are non-linear being subject to a 
reflecting boundary at 0. In equations 10-11, 𝜅 is a 
leak parameter (set to 1), 𝛽 is the strength of inhibition 
and 𝑓 is a sigmoid function that gates the inhibitory 
interactions (Brown & Holmes, 2001): 
𝑓(𝑥) = \

\]^(_`(a_b))
  (13), 

whereby g is the slope and b the inflection point of the 
sigmoid, representing the threshold above which the 
inhibiting unit becomes effective.  
     While the pro-variance and frequent-winner bias 
are both affected in the same way by the strength of 
inhibition (parameter β), they are effectively 
decorrelated by  the “threshold” parameter b. If b is set 
above the middle of the value-range, the selective 
integration filter will be inactive for mid-range vs. low 
values (e.g. cases in which the less variable sequence 
dominates over the more variable sequence), further 
exaggerating the bias for the more variable sequence. 
By contrast the threshold parameter does not have a 
major influence on the frequent-winner effect.  
 

Behavioral Task 
Participants 
Forty healthy individuals (N = 40) took part in 4 
experimental sessions. The first session was 
performed outside the MEG scanner and involved 
training in the task. The second session did not involve 
a pharmacological manipulation (nocebo) and was 
followed by two sessions that involved intake of a low 
dose of lorazepam (1 mg) or a placebo pill (order 
counterbalanced). 
 
Task & Procedure 
On each trial, participants observed 5-8 pairs of black 
2-digit numerical values (payoffs) presented 
sequentially (at a rate of 800 ms per pair), to the left 
and right of a central fixation point (0.34° diameter) 
against a grey background. The viewing distance was 
65 cm and each numerical character was 0.66° wide 
and 0.95° long. Participants were instructed to monitor 
the two sequences and report after the offset of both 

sequences, which one had the higher average value. 
Feedback was provided on each trial. At the end of 
each sessions participants received a monetary bonus 
based on their performance. Each session involved 6 
blocks with 60 trials each. At the end of each block, 
participants were informed about their cumulative 
accuracy. 
 
Design 
The average difference between the correct and 
incorrect sequence ranged from 2 to 12 units. Five 
types of trials were presented in random order. In type 
1 trials, the two sequences were sampled from two 
Gaussians with equal variances and difference means. 
In type 2 and type 3 trials the sequence with the higher 
mean had higher (type 2) or lower (type 3) variance. 
The difference in accuracy between type 3 and 2 trials 
quantified the pro-variance bias. In type 4 (5) trials the 
sequence with the higher mean value dominated more 
(less) often the sequence with the lower mean value. 
The accuracy difference between type 5 and 4 trials 
quantified the frequent-winner bias. 
 
MEG 
We recorded 275-sensor MEG while participants 
performed the task described above. We used 
independent component analysis (ICA) to eliminate 
head muscle and eye movement artefacts from the 
MEG data. The continuous MEG signal series across 
each run was submitted to spectral analysis to 
compute (i) overall spectral power and (ii) continuous 
amplitude envelope time series in different frequency 
bands. Those time series were used for detrended 
fluctuation analyses (DFA). The spectral analysis 
aimed to identify power changes in different frequency 
bands in the drug condition relative to placebo. The 
resulting scaling exponent quantifies the long-range 
temporal correlations in amplitude envelope 
fluctuations and is sensitive to the ratio between 
cortical excitation and inhibition (Pfeffer et al., 2018).  
 

Results 
Behavioural drug effects 
Participants had lower accuracy and longer response 
latencies under lorazepam compared to placebo, in 
line with reduced arousal under lorazepam (Figure 1b).  
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Critically, the frequent-winner and pro-variance biases 
were both enhanced under lorazepam. By contrast, 
the temporal dynamics of evidence accumulation, 
characterised, by the time-constant (leak) of the 
psychophysical kernels, were unaffected (Figure 1b, 
“Leak” panel). We note that if lateral inhibition 
between choice accumulators had increased under 
drug, then a decrease of the net leak would have 
been observed (Usher & McClelland, 2001).    
MEG drug effects 
Compared to placebo, lorazepam decreased theta (4-6 
HZ) and alpha (7-12 HZ) power across all MEG 
sensors and increased frontal beta power (15-30 HZ), 
which is a well-document effect of benzodiazepines 
(Figure 2a). Lorazepam also reduced the scaling 
exponent of theta-band amplitude envelopes (Figure 
2a). This is in line with a decrease in the excitation/ 
inhibition ratio in cortical circuits, due to the local, 
lorazepam-induced enhancement GABAergic 
neurotransmission. 

 
Figure 3. Extended model parameters in placebo and 
drug. Error bars: 2SE. **p<0.01, ***p<0.001. 
Link between MEG and behavioural effects 
The individual lorazepam-induced increase in beta 
power predicted the individual, non-specific increase in 
response latencies. By contrast, the individual 
increases in pro-variance and frequent-winner biases 
were predicted by changes in the scaling exponent 
(biomarker of cortical inhibition) (Figure 2b).  All results 
are in line with the idea that selective integration is 
realised via inhibitory interactions between the cortical 
processing stage that provides input to the decision 
computation (i.e. evidence accumulation).      
       Computational modelling further corroborated the 
above conclusion. Fitting the extended selective 
integration model to the placebo and drug sessions 
revealed a focal increase in the noise and inhibition 
parameters in the latter (Figure 3). Further, partial 
correlation analyses (with all model parameter and all 
MEG drug-induced changes as covariates) showed 
that changes in scaling exponents (cortical inhibition 
biomarker) selectively predicted changes in the 
inhibition parameter (r = -0.42, p = .014). By contrast, 
beta power changes were related to changes in the 
model’s decision noise (r = 0.41, p = .018). 

Conclusions 
Our results illuminate the cortical mechanisms 
underlying decision irrationality, linking those to GABA-
A mediated intra-cortical competition. An analogous 
mechanism has been inferred for multi-stable 
perception, another domain of intra-cortical 
competition(van Loon et al., 2013). Our insights 
challenge the notion, put forward by influential 
biophysical circuit models of perceptual evidence 
accumulation (Wang, 2008), that GABAergic inhibition 
shapes decision dynamics by mediating the 
competition between choice accumulators. Instead, 
our findings indicate that, during our task, inhibitory 
interactions predominate at the input stage encoding 
the evidence and are negligible at the evidence 
accumulation stage. We propose that during 
protracted decisions the neural circuits that typically 
carry out decisions in short timescales perform “micro-
decisions” (identifying the larger input) and act as 
filters to accumulators with longer time-scales 
downstream the cortical hierarchy. 
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