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Electrophysiological field data is comprised of both 
periodic components — neural oscillations — and 
aperiodic activity, sometimes called scale-free or 1/f 
activity. Investigations of aperiodic activity have 
established that it is dynamic and systematically varies 
within and between individuals, and relates to aging, 
and task performance. Currently, however, there are a 
wide variety of conceptual frameworks and methods for 
interpreting and analyzing aperiodic activity, the 
relationships between which are unclear. Here, we 
evaluate extant methods for measuring aperiodic 
activity in neural data. We briefly summarize available 
methods, focusing on spectral fitting approaches. We 
introduce simulation procedures for creating 
statistically representative neural time series and power 
spectra. Using simulations with known parameters, we 
systematically compare available methods, testing 
those that measure aperiodic activity by fitting 1/f 
properties in neural power spectra. We find that the 
most accurate approach is one that explicitly 
parameterizes neural power spectra. We highlight future 
plans for extending this framework to explore other 
available methods, aimed at defining best practices for 
measuring aperiodic neural activity, and seek to 
consolidate across currently disparate approaches. 
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Introduction

A key goal of the interaction between cognitive and 
computational neuroscience is to productively map 
between the concepts explored in computational and 
theoretical neuroscience and the measures applied to 
empirical data. Here we investigate the topic of 
aperiodic electrophysiological neural activity, which 
refers to non-periodic signal that commonly decreases 
in magnitude with increasing frequency, often 
described as 1/f (or '1/f-like' activity). This aperiodic 

activity is a major component of electrophysiological 
field data that has traditionally been under-studied. 
Here we investigate a number of methods used for 
quantifying aperiodic activity, employed across 
differing theoretical frameworks, using simulated data 
with known ground truth parameters.

Correlates of Aperiodic Neural Activity 

Aperiodic neural activity is a dynamic signal, with 
demonstrated demographic, clinical, cognitive, and 
physiological correlates. Aperiodic components have 
been shown to track age (Voytek et al, 2015a), clinical 
diagnoses (Voytek et al, 2015b), task performance 
(Podvalny et al, 2015; Waschke et al, 2017), and  
excitatory-inhibitory balance (Gao et al, 2017). That 
aperiodic neural activity is dynamic within and between 
subjects, with a range of correlates, makes it an 
interesting physiological signal to study. It is also 
important to note that periodic and aperiodic properties 
can be easily confounded in many existing analysis 
approaches, potentially leading to mis-interpretations 
(Haller et al, 2018), making the methods used for 
quantifying the aperiodic signal critical.

Theoretical Interpretations

Aperiodic neural activity has been analyzed under 
multiple conceptual frameworks. Some approaches 
seek to explore and explain aperiodic activity in terms 
of physiological models of putative generators of field 
data (Freeman & Zhai 2009; Gao et al, 2017). Other 
investigations consider aperiodic activity in terms of 
the variability, and/or level of 'neural noise' in the 
system (Voytek et al, 2015a; Waschke, 2017). More 
functional frameworks also focus on aperiodic activity 
as a scale-free phenomenon (He, 2014), focusing on 
fractal properties and self-similarity (Eke et al, 2002; 
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Schaefer et al, 2014) and/or long-term dependencies 
in time series and/or critical states in dynamical 
systems (Palva et al, 2013). A full comparison of the 
conceptual frameworks and interpretations is out of 
scope of this paper, however future work can use the 
investigation of the different methods as a way to map 
between similarities and differences across these 
conceptual frameworks.

Methods for Measuring Aperiodic Activity

Though there are many methods for measuring 
aperiodic activity, there are some particular properties 
of neural time series that need to be considered for 
any applied methods. The first is that neural time 
series contain both aperiodic and periodic components
—or neural oscillations—that are also variable and 
diverse. Any method for measuring aperiodic 
properties of neural data must be robust in dealing 
with and controlling for periodic components in the 
data. Another important aspect of neural time series is 
that aperiodic neural activity is not truly 1/f. Neural 
signals have regions that are 1/f-like, but they also 
exhibit 'knees', or frequencies at which the 1/f-like 
nature of the signal 'bends' (Miller et al, 2009). 
Methods for measuring aperiodic neural activity must 
therefore be robust to variations in the 1/f-like 
properties of the aperiodic activity.

Methods also need to be robust to noise, where 
noise refers to non-signal components in the sense of 
artifacts and/or machine noise, and not to statistical 
noise such as the 1/f itself. Additionally, methods 
should ideally be computationally efficient so that they 
can be applied at scale to increasingly large datasets. 
Finally, methods should ultimately allow for temporally-

resolved estimates of the aperiodic signal so that they 
can be used to analyze task data and other temporal 
dynamics of aperiodic activity. 

Methods

We simulated time series and also separately 
directly simulated neural power spectra, with neurally-
plausible statistics. All data was simulated to have 

 properties. We then evaluate several methods for 
estimating aperiodic properties, focusing on spectral 
fitting measures, and evaluate their performance 
based on their ability to reconstruct the parameter , 
henceforth referred to as the aperiodic exponent.

Simulations

Time series were simulated as combinations of 
aperiodic and periodic activity. Single 1/f time series 
were simulated by creating white noise, calculating 
and then rotating the power spectrum to a specified 
aperiodic exponent, and applying an inverse Fourier 
transform (Timmer & Konig, 1995). In another set of 
simulations, aperiodic activity with a ‘knee' was 
simulated using a physiological model that combines 
simulated excitatory and inhibitory post-synaptic 
potentials,  giving a 1/f-like signal with a 'knee' (Gao et 
al, 2017). Simulations including periodic components 
were created by additively combining aperiodic signals 
with simulated periodic signals, using different periodic 
kernels with varying amplitude, frequency and 
waveform shape characteristics. All time series 
simulations were generated using the NeuroDSP 
Python toolbox (Cole et al, 2019).

Power spectra were simulated with an aperiodic 
component with overlying peaks, reflecting oscillations. 
Aperiodic components were simulated as exponential 
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Figure 1: Simulations. A) A simulated time series, with 
an intermittent 10 Hz oscillation, and a 1/f aperiodic 
component. B) The power spectrum calculated from A. 
C) A directly simulated power spectrum, simulated with 
a 10 Hz peak, and a 1/f aperiodic component. 

Figure 2: Parameterizing Neural Power Spectra. 
The parameterized power spectrum from Fig. 1B.
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functions, and combined with periodic components 
that were simulated as gaussians. White noise was 
also added to the power spectra across all 
frequencies. All power spectra were simulated using 
the equations and code described in the FOOOF 
toolbox (Haller et al, 2018). 

Aperiodic Estimation Methods

Spectral Line Fitting We employed a series of 
spectral fitting methods, in which the aperiodic 
exponent is estimated from fitting a line to the power 
spectrum (Freeman & Zhai, 2009). We tested several 
proposed variants of this approach including 
approaches to fit a linear fit of the power-spectrum, in 
log-log, as an ordinary least squares (OLS) fit, a robust 
linear model (RLM) fit, and using the RANSAC robust 
regression algorithm (RAN). We also tested an 
exponential fit (EXP) of the power spectrum in semi-
log, fit as non-linear least squares curve fitting 
procedure (scipy.optimize.curve_fit). All of the above 
methods were also fit using oscillation exclusions, 
excluding a fixed alpha region of 7-14 Hz, as has been 
suggested and done before (Voytek et al, 2015a). 

Parameterizing Neural Power Spectra We also 
applied a recent algorithm for parameterizing neural 
power spectra (Haller et al, 2018), which is itself an 
adapted method for spectral line fitting. Briefly, this 
approach seeks to jointly model the aperiodic signal 
using an exponential fit, as well as modeling overlying 
oscillatory peaks, fit as gaussians. It uses an iterative 
procedure to fit and remove peaks, allowing for a final 
fit of the aperiodic signal that is fit on a peak-removed 
version of the original spectrum.

Results

The distributions of errors for each methods’ 
reconstructions of the aperiodic signal are shown in 
Figure 3. The global best method was the 
parameterization approach (FOOOF), with a median 
error of 0.0344. The best spectral fit measure was 
RAN, with a median error of 0.0542 without alpha 
exclusions, and 0.0601 with alpha exclusions.

Error distributions were compared using Wilcoxon 
rank sum statistical tests. All methods are statistically 
different from each other (p < 0.001), except for the 
OLS and EXP comparisons (with and without alpha 
exclusions). Excluding fixed alpha bands significantly 
improved accuracy for all methods (p < 0.001) except 
for RAN, in which it accuracy decreased (p < 0.001). 

Discussion

Spectral Fitting Methods The current investigation 
focused on evaluating previously proposed spectral fit 
measures. On average, median error was fairly low, 

although the variance was relatively high, indicating  
that such estimations can sometimes be very 
inaccurate. The proposal to exclude alpha regions 
(Voytek et al, 2015a) does improve average errors for 
most approaches, though does not get rid of the high 
variance. Though the robust estimation procedure 
RANSAC is relatively good, surprisingly, it gets worse 
with alpha exclusions. Overall, however, fitting the 
aperiodic with a parameterization approach has the 
lowest average error, and lowest variance, supporting  
the argument that explicitly and jointly modeling both 
periodic and aperiodic components is a beneficial 
approach (Haller et al, 2018). 

Method Properties Based on the desired properties 
for aperiodic methods, the spectrum parameterization 
procedure is robust to both periodic and aperiodic 
variations, is robust to noise, and is computationally 
efficient. However, as it is a measure applied to power 
spectra, it does not have high temporal resolution, 
which should be a focus for future work.

Other Aperiodic Methods Methods for measuring 
aperiodic activity, other than the line-fitting or 
parameterization approaches described, include 
resampling time series to estimate the scale-free 
power spectrum (Wen & Liu, 2016), self-similarity 
measures such as detrended fluctuation analysis 
(Schaefer et al, 2014) and information theory 
measures (Waschke et al, 2017). Ongoing work is 
currently implementing and testing variants of all these 
measures against the simulated data, to analyze their 
accuracy for measuring aperiodic properties, as well 
as to systematically compare their properties in terms 
of their robustness to noise, computational efficiency, 
and temporal-resolution.

Figure 3: Absolute error of spectral fitting approaches 
for estimating the aperiodic exponent. Top row: 
spectral fitting approaches. Bottom row: methods 
applied excluding alpha region. Note that the 
parameterization approach, F000F, is reprinted in 
both rows, for comparison. Each method was 
evaluated on 3600 spectra across noise levels.
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Related Work The current approach builds upon 
and extends recent comparisons of methods that 
included fewer comparisons, typically focused within 
one conceptual framework (Eke et al, 2002; Schaefer 
et al, 2014), and seeks to explore more broadly across 
methods and include newer approaches.

Future Work As well as exploring additional 
available methods, future work will seek to use the 
mapping between employed methods as a grounding 
for comparing between conceptual frameworks.

Conclusion

Aperiodic electrophysiological neural activity is a 
prominent and dynamic component of field recordings 
with many known correlates. Despite this, there is 
currently no consensus for best practices or 
comparisons across approaches for quantifying this 
signal. This is complicated by the many conceptual 
frameworks that determine the analytical approach 
used. Here, we use a simulation-driven approach to 
evaluate the accuracy of, and similarities between, 
extant methods. We systematically investigate spectral 
fitting approaches, and show that parameterizing 
neural power spectra is the most accurate. We note 
how this simulation testing approach can be extended 
to cover other methods, which can then allow for a 
more systematic comparison of the conceptual 
frameworks involved in aperiodic investigations. 
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