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Abstract

Multisensory integration and segregation are important
for processing perceived information in animals. Exper-
imental data indicate that the brain processes informa-
tion in a Bayesian way. We consider a recently proposed
model that is able to perform both multisensory integra-
tion and segregation concurrently using congruent and
opposite groups of neurons in each sensory module. By
incorporating output-dependence in the noise of the neu-
ral dynamics, we show that the model is able to yield
estimates with excellent agreement with Bayesian infer-
ence in the weak input limit, and fairly good agreement
in stronger inputs. When the prior consists of a cor-
related component and an independent component, we
show that Bayesian inference can be achieved by incor-
porating an additional layer of neuron groups.

Keywords: Bayesian inference; multisensory integration and
segregation; continuous attractor neural network

Introduction

Our brains process information from different sensory modali-
ties. If two cues are received from the same source, the neural
system will integrate those sensory signals. Otherwise, they
should be segregated. Experimental data suggested that the
brain can integrate visual and vestibular cues to infer heading-
direction according to Bayesian prediction (Fetsch, Deange-
lis, & Angelaki, 2013). In the dorsal medial superior temporal
(MSTd) area and the ventral intraparietal (VIP) area, there ex-
ist two types of neurons, congruent and opposite cells (Gu,
Angelaki, & DeAngelis, 2008; Chen, DeAngelis, & Angelaki,
2013). Here, we consider a recently proposed model in which
the congruent and opposite neurons play a role in multisen-
sory integration and segregation respectively (Zhang et al.,
2019). In the model, the neural circuit consists of two mod-
ules, each containing two groups of excitatory neurons – con-
gruent and opposite neurons. It was shown that the proposed
network yields the Bayesian posterior estimate in a broad
range of parameters, but there are also parameter ranges that
the inference can only be approximately Bayesian. Hence,
in this paper we will approach the dynamics analytically and
propose improvements for achieving Bayesian inference. Fur-
thermore, the Bayes-optimality in Zhang et al. was based on
a prior distribution of stimuli that is fully correlated. In prac-
tice, there are many other scenarios described by priors with
more than one components. For example, studies in causal
inference consider prior distributions with a correlated and an
independent component (Körding et al., 2007; Shams & Beier-
holm, 2010). In the second half of the paper, we propose a
neural circuit with additional modules to tackle these cases.

Network Model
We consider a neural network model (Zhang et al., 2019) re-
ceiving external inputs of modality 1 and 2 with Iext

m (y, t), m =
1,2, where y is an angular variable in the range (−π,π] and
t is time. The two inputs are fed into two separate modules.
Each module has two groups of congruent and opposite neu-
rons, each neuron having a preferred stimulus y. The recur-
rent connections within each group are excitatory and depen-
dent on the preferred stimuli of the neurons through a bump-
shaped function of the separation of the stimulus positions,
and there are global inhibitory connections connecting both
groups, thus forming a continuous attractor neural network
(Fung, Wong, & Wu, 2010). The congruent groups of each
module are connected in a congruent manner, that is, neu-
rons receiving inputs at position x of each module are recipro-
cally connected to each other. Likewise, the opposite groups
of each module are connected in an opposite manner, that is,
neurons receiving inputs at position x of one module are re-
ciprocally connected to those at position x+ π. Let ψm(x, t)
and ψ̄m(x, t) be the synaptic input at position x and time t for
the congruent and opposite groups respectively in module m,
and denote as m̄ the other module of module m. Then the
neuronal dynamics of the congruent group is given by

τ
∂ψm(y, t)

∂t
=−ψm(y, t)+

π

∑
y′=−π

JrcV (y− y′,a0)Rm(y′, t)

+
π

∑
y′=−π

JrpV (y− y′,a0)Rm̄(y′, t)+ Iext
m (y, t), (1)

where Jrc and Jrp represent the strengths of the recurrent and
reciprocal couplings respectively. Rm(y, t) is the firing rate
of the neurons at position y and t. It is given by Rm(y, t) ≡

ψ2
m(y, t)/Dm, where Dm ≡ 1+ω

[
∑
y

ψ2
m(y, t)+ Jint ∑

y
ψ̄2

m(y, t)
]

is the global inhibition acting on the congruent group in mod-
ule m. V (y− y′,a0) is the von Mises function given by

V (y− y′,a0)≡
exp[a0 cos(y− y′)]

2πI0(a0)
, (2)

where a0 is referred to as the concentration of the von Mises
function, and I0(a0) is the modified Bessel function of order 0
introduced to normalize the von Mises function.

In Eq. (1), we assign the external inputs to be the sum of
a bump with constant background, plus its noisy component
characterized by the Fano factor F0,

Iext
m (y, t) = ImV (y− xm,

a0

2
)+ Ib +

√
F0Âεm(y, t) (3)

where εm(y, t) is Gaussian white noise of zero mean and vari-
ance satisfying 〈εm(y, t),εm′(y′, t ′)〉 = δmm′δ(y− y′)δ(t − t ′).
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In contrast with Zhang et al., we incorporate the center-of-
mass amplitude Â of the output population into the noise mag-
nitude. It is defined by Â ≡ mod[ 1

N ∑y R(y)e jy], where j is
the imaginary number

√
−1. In our calculations Â was deter-

mined self-consistently by iterations.
On the other hand, the neuronal dynamics of the opposite

group is given by

τ
∂ψ̄m(y, t)

∂t
=−ψ̄m(y, t)+

π

∑
y′=−π

JrcV (y− y′,a0)R̄m(y′, t)

+
π

∑
y′=−π

JrpV (y− y′+π,a0)R̄m̄(y′, t)+ Iext
m (y, t). (4)

These equations can be solved by numerical simulations
to obtain the means and variances of the firing rates. In
the framework of probabilistic population coding (Ma, Beck,
Latham, & Pouget, 2006), the posterior estimates of the ex-
ternal inputs can be derived from these quantities. Using the
projection method (Fung et al., 2010), we first attempted first
order perturbation using the von Mises function and its deriva-
tive as the basis. They represent distortions of the height and
position of the bump-shaped firing rate distributions respec-
tively, but the calculated means and variances of the distribu-
tions deviated from the numerical results. A careful inspec-
tion of the firing rate distributions showed that their profiles
were not calculated accurately. Hence, higher order perturba-
tions describing the distortions in the height, position, width
and skewness have to be introduced. We approximate the
solution to the dynamical equations to be

ψm =um0 +um1 cos(y1− s1)+um2 cos2(y1− s1)

+um3 sin2(y1− s1), m = 1,2. (5)

The background, height, position, width and skewness are
largely determined by the coefficients um0, um1, sm, um2 and
um3 respectively. Multiplying both sides of Eqs. (1) and (4)
by 1, cos(y− sm), cos2(y− sm) and sin2(y− sm) in turn and
integrating over y, we obtain the steady state equations for this
set of coefficients after averaging over noise. By considering
the linear perturbation around the steady state, the variance
σ̂2

m of the peak positions ŝm can be found.

Bayesian Inference
Consider the task of inferring the stimuli sm (m = 1, 2) from
the received cues xm (m = 1, 2). It has been shown that for
uniform distributions of sm and cues xm, the condition for the
network to produce Bayesian inference is that the marginal
posterior distribution of s1 conditional on the direct cue x1 and
indirect cue x2 is given by (Zhang et al., 2019)

p(s1|x1,x2) ∝ p(s1|x1)p(s1|x2), (6)

where the marginal posterior distribution p(s1|x2) given the
indirect cue x2 depends on the prior distribution p(s1,s2) via

p(s1|x2) ∝

∫
ds2 p(x2|s2)p(s1,s2). (7)
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Figure 1: Weak input (I1 = I2 = 0.01U0, left column) and
strong input (I1 = I2 = 0.7U0, right column). Symbols: net-
work results; dashed lines: Bayesian prediction. The blue and
red colors represent congruent and opposite groups in mod-
ule 1 respectively. x1 = 0. Parameters: a0 = 3, ω = 3×10−4,
Jint = 1, F0 = 0.5, Jrc = 0.3Jc, Jrp = 0.15Jc, where Jc is the
threshold recurrent strength for spontaneous bump formation
and U0 its corresponding synaptic bump height.

The expressions of the marginal posterior distribution of s2
can be obtained by interchanging s1 and s2; hereafter we will
focus on the result for s1. To explain the role of congruent
and opposite neurons, it is convenient to consider likelihood
distributions in the form of the von Mises distribution with con-
centration κm,

p(xm|sm) =V (xm− sm,κm). (8)

Hence, to verify whether the congruent groups of the pro-
posed network is able to make Bayesian predictions, one may
use them to estimate the posterior distributions of s1 when it
receives cue 1 only, cue 2 only, and cues 1 and 2 combined,
and test whether the result of the combined cues agrees with
those predicted from the single cues according to Eq. (6).

We first consider a prior that the stimuli s1 and s2 are corre-
lated. In particular, we consider the prior

p(s1,s2) =V (s1− s2,κs). (9)

When this von Mises prior is substituted into Eq. (7), the
integration yields a new von Mises function V (s1 − x2,κ2s),
where κ2s ≡ A−1[A(κ2)A(κs)] with the function A related to
the modified Bessel functions via A(κ)≡ I1(κ)/I0(κ) (Mardia
& Jupp, 2000). In turn, when Eq. (7) is substituted into Eq. (6),
the product of two von Mises distributions yields another von
Mises distribution whose mean and concentration are given
by a vector sum rule. Thus, the condition (6) for Bayesian
inference reduces to

κ̂1e jŝ1 |I1,I2 = κ̂1e jŝ1 |I1 + κ̂2se jŝ2 |I2 . (10)

The subscripts represent the non-vanishing stimuli applied
to the network, and the hat accents represent the network es-
timates.
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Figure 2: Network architecture for priors with correlated and
independent components. Parallel arrows represent congru-
ently connected couplings. Crossed arrows represent cou-
plings shifted by π.

To segregate the information from the two cues, we con-
sider the disparity information of stimulus 1 defined to be

pd(s1|x1,x2) ∝
p(s1|x1)

p(s1|x2)
. (11)

Noting that the cosine function satisfies cos(y− y′ − π) =
cos(y− y′), we obtain

pd(s1|x1,x2) ∝ V (s1− x1,κ1)V (s1− x2−π). (12)

Hence, the mean ∆ŝ1 and concentration ∆κ̂1 of the dispar-
ity information, to be estimated by the opposite groups of neu-
rons, are given by

κ̂1e jŝ1 |I1,I2 = κ̂1e jŝ1 |I1 − κ̂2se jŝ2 |I2 . (13)

Equations (10) and (13) are used to generate Bayesian
predictions based on the single-input estimates and compare
with the combined estimates generated from network simula-
tions (the estimated concentration will be compared with the
inverse of the variance). As shown in Fig. 1, we find that the
network can implement Bayesian inference in the weak input
limit. When the inputs are strong, the network prediction starts
to deviate from the Bayesian inference, but the estimates re-
main reasonably close. In contrast, in the original model of
Zhang et al., sm and κm cannot be estimated accurately simul-
taneously. This shows that the incorporation of Â in the noise
amplitude improves the accuracy of Bayesian prediction.

Priors with an Independent Component
So far we have considered the prior in Eq. (8) in which the two
stimuli are correlated. However, there are many other scenar-
ios described by priors with an additional independent compo-
nent. Those priors are often used in causal inference tasks,
in which the subject is required to determine whether the two
cues originate from the same stimulus or they are independent
(Körding et al., 2007; Shams & Beierholm, 2010). Hence, we

consider the following two-component prior,

p(s1,s2) =
p0

2π
V (s1− s2,κs)+

1− p0

(2π)2 . (14)

Using Eq. (7), the marginal posterior distribution p(s1|x2)
becomes

p(s1|x1,x2) =p0CV (s1− x1,κ1)V (s1− x2,κ2s)

+(1− p0)V (s1− x1,κ1), (15)

where C is the normalization constant. Hence, we add another
layer of neurons to represent the posterior taking account of
the two components of the prior. The second layer receives
the input from congruent neurons (representing the first term
in Eq. (15)), and the feedforward inputs from the cue (corre-
sponding to the second term in Eq. (15)). The dynamics of
this group of neurons is given by

τ
∂ψ2m(y, t)

∂t
=−ψ2m(y, t)+

π

∑
y′=−π

JrcV (y− y′,a0)R2m(y′, t)

+ p0

π

∑
y′=−π

ck cos(y− y′)Rm(y′, t)+ Iext
m (y, t). (16)

Note that the neuron groups in the second layer do not
have reciprocal connections from the other module. Hence,
their output will be the weighted sum of the two types of input.
Thus, for the case of combined cues, the output of the congru-
ent group in module 1 will become p0κ̂1e jŝ1 +(1− p0)κ

′
1e jx1

for an appropriate choice of ck, where κ′1 is the concentra-
tion of the output from the neuron group in the second layer.
Meanwhile, κ′1 does not change when this network only re-
ceives direct stimulus 1. The output will then be p0κ1e jx1 +
(1− p0)κ

′
1e jx1 . When the network only receives stimulus 2,

the final output of the congruent group will be p0κ̂2se jx2 . So in
summary, the network has a Bayesian behaviour in all cases.
Figure 3 shows the vector diagram for achieving information
integration.

In Fig. 4 we compare the network behaviour in weak and
strong inputs, corresponding to I = 0.01U0 and I = 0.7U0 re-
spectively. The outputs from the second layer behave in a
Bayesian way in the weak input limit. Although the prior is
the sum of two von Mises functions, the output is not double-
peaked since the position disparity between inputs from the
first layer and the external cue is small.

Next, we consider information segregation. Using Eq. (11),
the inverse of the disparity information is given by

pd(s1|x1,x2)
−1 =p0CV (s1− x2,κ2s)V (s1− x1 +π,κ1)

+(1− p0)V (s1− x1 +π,κ1), (17)

where C is the normalization constant. Note that the stim-
ulus position is shifted by π for the opposite group. Hence,
we see that the opposite group in the second layer has the
same structure as that of the congruent group, except that the
positions of the outputs from the second layer is shifted by
π. Figure 4 shows that the disparity information agrees with
Bayesian prediction accurately in the weak input limit.
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Figure 3: Geometric interpretation of vector space. Colored
vectors represent the sum of other vectors (black). Outputs
from first layer: κ1c (congruent) and κ1o (opposite), second
layer: κ′1c (congruent) and κ′1o (opposite). Note that the vec-
tors (black) have been rescaled by p0 and 1− p0.

Conclusion
We have analyzed the dynamics of neural circuits for multisen-
sory integration and segregation using separate modules for
each stimulus modality, and congruent and opposite groups of
neurons in each module. By incorporating output-dependence
in the noise of neural dynamics, we found that the estimates
of the integrated posteriors and disparity information agree
with Bayesian prediction accurately in the weak input limit.
This illustrates the significance of feedback information in neu-
ral information processing, and generates an experimentally
testable prediction about noisy neural dynamics.

We further show that when the prior has more than one
components, additional modules can be used to produce
Bayesian prediction of the integrated information. This indi-
cates the close relation between network architecture and the
information structure of the environment, as represented by
the prior distribution (Wang, Zhang, Wong, & Wu, 2017). For
the composite prior with a correlated and independent compo-
nent, the additional module is one that processes direct stim-
uli. This is readily found in biological systems, which are there-
fore endowed with the capacity to give Bayesian prediction in
complex environment. It is possible to generalize the model to
prior distributions with more than two components.
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