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Abstract
Numerous cognitive tasks, like the n-back, employ se-
quences of stimuli to target particular cognitive func-
tions. These sequences are generated to satisfy specific
criteria but the generation process typically induces unin-
tentional statistical structure in the sequences which may
not only affect performance but also alter the strategies
participants use to complete the task.

Here we propose that the generation of stimulus se-
quences can be conceptualized as a soft constraint satis-
faction problem and offer experimental evidence demon-
strating the impact of local sequence features on human
behavior. Our approach to sequence generation provides
a means to better control and assess sequence struc-
tures, which in turn could help clarify the cognitive and
neural processes involved in cognitive tasks.

Keywords: structural features; cognitive strategies; n-back;
constraints satisfaction

Introduction
With more than 1600 hits on PubMed, the n-back task is one
of the most popular tasks in cognitive psychology today. It
is widely used not only to evaluate working memory capacity
but also as a training protocol to improve working memory and
possibly fluid intelligence (Au et al., 2015; Jaeggi, Buschkuehl,
Jonides, & Perrig, 2008). In the n-back task, participants are
presented a sequence of stimuli and have to determine for
each stimulus if it matches or not the stimulus presented n-
steps ago. Stimuli that match are called ”targets”, those that
dont match are called ”distractors”, with close misses (i.e., dis-
tractors that would be targets under a slightly different N) are
called ”lures”. While the task is widely considered a work-
ing memory task, it does not correlate well with other ”gold-
standard” working memory tasks, such as the complex span

task (Jaeggi, Buschkuehl, Perrig, & Meier, 2010; Miller, Price,
Okun, Montijo, & Bowers, 2009).

Previous studies have raised concerns that the n-back task
may be solved using multiple strategies, not all of which rely
purely on working memory processes (Ralph, 2014). There
are numerous variants of the n-back task, but even within a
variant participants could use various strategies. One source
of variation in the n-back task that is potentially biasing partici-
pants strategies are the statistical properties of the sequences
of stimuli used for n-back task, which are typically uncon-
trolled for and differ across studies (Braver, 2012). For ex-
ample, (Ralph, 2014) showed that various statistical proper-
ties of n-back sequences may favor a reactive cognitive con-
trol strategy whereby peoples performance relies on detect-
ing stimulus familiarity rather than on active information up-
dating in working memory. Because statistical properties of
stimulus sequences seem to bias cognitive control strategies
and hence cause heterogeneous behavioral and neurophys-
iological outcomes it is necessary to characterize those sta-
tistical properties and develop methods to generate adequate
sequences.

Here, we propose an approach that allows researchers to
parameterize interesting features of the n-back sequences
which may affect behavior. We then evaluate the predictive ef-
fect of such uncontrolled parameters on behavioral outcomes.
Results from this research may have implications on the way
the n-back task is put into practice to study working memory
or improve cognitive skills. While our focus here is on the n-
back, the principles presented below apply to a broader range
of cognitive paradigms.

Parameterizing the N-Back Sequences

While n-back sequences are usually thought of as an ordered
set of i.i.d. generated and sequentially independent stimuli, in
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practice the sequences of stimuli are neither objectively nor
subjectively independent. Objective local structure is intro-
duced by design constraints like a fixed number of target or
stimulus set size, while subjectively people are highly sen-
sitive to local sample structure in sequences. For example,
unconstrained sampling from a uniform distribution to gener-
ate sequences may lead to frequent local repetitions of stimuli
(i.e., ”lumpiness”; Abelson (1995)). In the n-back task, such lo-
cal patterns could encourage people to identify targets solely
based on stimulus familiarity rather than to use their working
memory, as this strategy may in this case lead to high per-
formance at low cognitive cost. Here we define a few basic
measures known to be important for the perception of local
structure in sequences, and show how to use these measures
to parameterize families of sequences.

N-Back sequences are typically generated by randomly
sampling M stimuli from a vocabulary set V (e.g., a set of
8 letters) with the constraint of having a specific number of
targets (T ) in the sequence, given the fixed value of N for the
intended n-back version. Researchers typically manipulate N
and T to study behavioral and neural correlates of working
memory; other parameters are treated as nuisance variables.

A common procedure to generate n-back sequences in-
volves two steps: first a sequence of stimulus-role placehold-
ers (e.g., D=distractor, T =target) is generated; then partic-
ular stimuli are sampled from the vocabulary to fulfill those
roles. For example, the first step might generate the sequence
”DDDTDTDT” while the second step would instantiate partic-
ular stimuli (e.g.,”ABCEDEA”). Generating n-back sequences
using this procedure is problematic however because the re-
sulting sequences are typically highly skewed with some stim-
uli being presented much more frequently than others and fre-
quently presented stimuli having a higher probability of be-
ing targets (Ralph, 2014). Moreover, lures are more likely to
trigger false alarm responses and to require proactive control
processes.

The lack of control for parameters such as lures and lumpi-
ness may compromise results interpretations and generate
scientific confusion because such parameter may affect cogni-
tive strategies and consequently increase behavioral and neu-
rophysiological data heterogeneity (Juvina & Taatgen, 2007).
Ralph (2014) urged researchers to carefully control frequency
distribution of stimuli, stimulus repetition, the fraction of targets
and the fraction of lures, and the number of different stimuli in
the vocabulary set in order to have a better handle on cog-
nitive strategies. However, generating sequences that fulfill
multiple criteria may not always be possible or practical using
standard, brute-force approaches; there might for instance be
cases where no such sequence exists. Furthermore, future
research may require the addition or removal of criteria and
such changes would typically require rewriting new sequence
generators.

In the following section we conceptualize the generation of
structured sequences for the n-back as a constraint satisfac-
tion problem. This approach has several key advantages: a)

it provides an implementation blueprint that accommodates a
wide range of use cases b) it supports the softening of con-
straints to ensure approximate solutions can be found within
a practical timespan; c) it supports compositional control of
constraints that is well suited for hypothesis testing and d) by
taking advantage of the Maximum Entropy optimization frame-
work and Conditional Random Fields model, it is possible to
move from an intuitive definition of constraints to the space of
probability distributions that are invaluable for modeling and
data analysis (Batou & Soize, 2013).

Structured Sequences

A sequence is an ordered set of M stimuli sampled from a
vocabulary of V stimuli that satisfies specific criteria. A se-
quence of stimuli that (approximately) satisfies a set of specific
constraints on parameters or features is a qualified sequence.

The problem of generating a qualified sequence can be re-
duced to a soft constraint satisfaction problem, P:

P = 〈X ,D,C,W 〉

where X is a set of structural variables to be controlled (see
Table 1), D is the set of distributions over the variables, C is
the set of constraints expressed as expected values for X (see
Table 2), and W is a cost function that uses the constraints to
map a sampled sequence to a real value (Table 2); it repre-
sents the degree to which a particular sequence violates the
constraints in C. Generating a qualified sequence for the n-
back task can be formulated as minimizing the aggregated
cost of violating the constraints. Note that some constraints
in the n-back task cannot be relaxed; for example, constraints
which includes the expected value of the N, must be fully sat-
isfied for the sequences to be valid.

We have argued that sequence structure may affect cogni-
tive performance and that consequently such features need to
be controlled. We argued for the use of the constraint satisfac-
tion framework as a principled approach to evaluate and gen-
erate qualified sequences. This approach operates on struc-
tural variables which may or may not affect human behavior
and thus may or may not require stringent control.

To evaluate the relevance of the structural variables high-
lighted above for the n-back task we will analyze an existing
dataset which did not explicitly manipulate or control for these
structural variables. If these structural variables are informa-
tive about participants’ n-back performance it follows that they
are scientifically relevant and should be explicitly listed and
constrained for both sequence generation and performance
evaluation.

Evaluating Behavioral Impacts of Structural
Features

Dataset

We used a previously published n-back dataset from Cardoso-
Leite et al. (2016). This dataset contains n-back data from 60
healthy adults (M=20.68, SEM=0.42) completing both the 2-
back and 3-back versions of the n-back paradigm. For each
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Table 1: Structural Variables (X )

Structural Variables

xN N, number of trials to look back for a target.

xt Targets ratio describes the number of tar-
get trials in a sequence regardless of the
stimulus.

xs Skewness is maximum deviation of stimuli
frequency from uniform distribution.

xl Lures ratio represents the number of dis-
trators which would be targets for N− 1 or
N +1.

xv Vocabulary size is the number of all unique
stimuli to be presented.

xtl Recent targets ratio represents the number
of targets in recent trials.

xll Local lures ratio describes the number of
lures in recent trials.

xvl Local vocabulary size is the number of
unique stimuli presented in recent trials.

xul Lumpiness is maximum number of repeti-
tions in a sequence.

xsl Local skewness is the number of unique
items shown in recent trials.

xg Gap is the number of trials since the last
time same stimulus was appeared.

Table 2: Constraints (C)

Constraint Violation Cost (W )

E[xn] = N Wn ∼

{
0 xn = N
∞ xn 6= N

E[xt ] = T × trials Wt ∼ 1−N (T × trials,1)

E[xtl ] =
T×w
trials Wtl ∼ 1−N ( T×w

trials ,1)

E[xl ] = L× trials Wl ∼ 1−N (L× trials,1)

E[xll ] =
L×w
trials Wll ∼ 1−N ( L×w

trials ,1)

E[xv] = |V | Wv ∼ 1−N (|V |,1)
E[xvl ] = min(|V |,w) Wvl ∼ 1−N (min(|V |,w),1)
E[xul ] = w Wul ∼ 1−N (w,1)

E[xs] =
trials
|V | Ws ∼ 1−N ( trials

|V | ,1)

E[xsl ] = max(1, w
|V | ) Wsl ∼ 1−N (max(1, w

|V | ),1)

E[xg] =
trials

w Wg ∼ 1−N ( trials
w ,1)

version participants completed 3 sequences of 30 trials each
which results in a grand total of 360 n-back sequences and
10800 trials. On each trial, stimulus identity, reaction time and
accuracy were recorded. For more details about this dataset,
see Cardoso-Leite et al. (2016).

Data Analysis

To evaluate the need to control for structural variables we fit
and contrast two nested models that predict participants accu-
racy on a trial-by-trial basis, using a different set of predictor
variables.

The base model uses the common approach of relating
performance to descriptors of the sequence as a whole (i.e.,
xn, xv, and xt ) as well as the current stimulus (i.e., target or
distractor) to predict the accuracy of the response to the cur-
rent stimulus.

The extended model includes in addition all the structural
variables listed in Table 1 (e.g., xl , xu, xs). These structural
variables are computed not on the sequence as a whole but
rather on the recent stimulus history (8 previous stimuli, ex-
cluding the current stimulus). This approach exploits local
variation along the dimensions of the structural variables to
evaluate the impact of those variables on accuracy.

The data was subdivided into a training (80%) and a test
set (20%). Both models were fit to the same training set us-
ing the imbalanced Partial Least Squares (PLS) method; this
method was chosen because most responses were correct
(92%) and the predictor variables are not mutually indepen-
dent. Both models were then evaluated by their ability to ac-
count for test data using the area under the curve (AUC) as
the model performance metric. The reliability of the AUC was
further characterized using bootstrapping (1000 repetitions).

Two main conclusions can be drawn if the extended model
outperforms the base model: a) structural variables affect be-
havior and hence need to be controlled by the sequence gen-
erator, b) even when they are controlled at the level of a se-
quence as a whole, local variations in structural variables may
already be enough to affect behavior and it might be neces-
sary to use trial-by-trial estimates of local properties to ana-
lyze human behavior and brain activity.

Results

Figure 1 shows the ROC curves for the two fitted models.
The base model predicts response accuracy above chance
level (AUC=59.51; CI95% = [54.81, 64.21]). The addition of
structural variables as predictors in the extended model im-
proves model performance substantially (AUC=68.56; CI95%
= [65.76, 71.36]).

To determine which variables drive the performance accu-
racy of the extended model, we ran a model-based variable
importance analysis using the Boruta package in R (Kursa
& Rudnicki, 2010). These importance scores were calcu-
lated using random forest method alongside shadow features,
which are copies of original features but with randomly re-
placed values; this serves to remove the importance of a fea-
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Figure 1: Accuracy classification performance for the base
and extended models. AUC = Area Under the Curve

ture while nevertheless maintaining their distribution of values
unchanged.

This analysis shows that the structural features computed
on the recent history contributes most to the predictability of
participants accuracy. Figure 2 shows the relative importance
of the predictor variables used by the extended model.

Figure 2: Relative importance of structural variables (V ) on
the prediction of participants response accuracy.

Although a direct causal relationship cannot be inferred
from the results, higher contribution of recent trials in the ex-
tended model (i.e., higher relative importance of xvl , xtl , xll ,
and xsl than their global counterparts, xv, xt , xl , and xs) sug-
gests that behavioral responses are partially guided by a more
fine-grained set of structural features.

Conclusion
In sum, we propose a compositional framework to parameter-
ize and exploit interesting features of the n-back sequences
and evaluated behavioral effects of the features of random se-
quences. We developed two predictive models to compare the
importance of these structural features.

Methods that are commonly used to generate n-back se-
quences use independent random sampling for each trial and
cannot control all the influential features. Instead of an inde-
pendent random sampling process, we proposed a framework
to reformulate generating the n-back sequences as a soft con-
straint satisfaction problem. This approach can be used to for-
malize the effect of structural patterns in other cognitive tasks
that present random sequences of stimuli.
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