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Abstract: 

According to mathematical models, neural noise 
operating on a within-trial timescale has a major impact 
on the timing and accuracy of our perceptual choices. 
However, the models themselves do not provide a 
means of estimating the noise levels of individual 
observers. Through a combination of psychophysics 
and neurophysiological recordings, the present study 
aims to identify reliable signatures of within-trial noise 
in EEG. This work can contribute to the development of 
novel ‘neurally-informed’ decision models that would be 
particularly beneficial in studies of individual 
differences or group comparisons.  
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Introduction 

To date, research on perceptual decision-making has 
relied heavily on computational ‘sequential sampling’ 
models to give insight into the latent psychological 
processes underpinning choice behaviour. These 
models hold that decisions are formed by encoding a 
decision variable that accumulates noisy senosry 
evidence to a bound (Schubert, Frischkorn, 
Hagemann, & Voss, 2016). A key component of many 
of these models is ‘within-trial noise’: the standard 
deviation of the momentary fluctuations in the decision 
variable’s path arising from variability in the physical 
stimulus and/or internal sources of neural noise. 
However, within-trial noise is typically set as a scaling 
parameter in modelling studies such that it is fixed to a 
single arbitrary value for all individuals or experimental 
conditions (O’Connell, Shadlen, Wong-Lin, & Kelly, 
2018).  Importantly, there is mounting evidence from a 
variety of sources that neural noise varies 
considerably across individuals and clinical groups 
(Dinstein, Heeger, & Behrmann, 2015; Krystal et al., 
2017; Saville et al., 2015). Thus there is a significant 
need to develop methods and models through which 

within-trial noise can be reliably estimated alongside 
the other parameters of the decision making process. 

Parallel research on visual psychophysics has 
developed methods for estimating levels of internal 
noise, including the equivalent noise procedure (Dakin, 
Mareschal, & Bex, 2005; Tibber, Kelly, Jansari, Dakin, 
& Shepherd, 2014) which furnishes a behavioural 
estimate of an individual’s internal noise and sampling 
efficiency in the context of one of the canonical 
paradigm for perceptual decision making research: 
random dot motion direction discriminations. This 
method has been used to highlight significant 
differences in internal noise levels between a range of 
clinical and non-clinical groups (Dakin et al., 2005; 
Manning, Dakin, Tibber, & Pellicano, 2014; Tibber et 
al., 2015, 2014) but has not yet been incorporated into 
decision modelling investigations. Here we seek to 
leverage the equivalent noise method in order to 
individually estimate within-trial noise parameter 
values when fitting sequential sampling models to 
behavioural data.  

A limitation of the equivalent noise method is that it 
cannot allow internal noise to be estimated on a trial-
by-trial basis. Therefore, another aim of the present 
study is to validate a novel electrophysiological marker 
of within-trial, internal decision noise. Recent work on 
human EEG isolated discrete signals that trace the 
neural evidence accumulation process that gives rise 
to perceptual decisions (O’Connell, Dockree, & Kelly, 
2012; Twomey, Murphy, Kelly, & O’Connell, 2015). 
The present study will examine rapid fluctuations in 
these signals, operating within the time-course of a 
typical decision, in order to isolate a neural marker of 
within-trial decision noise.   

 

802

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



Methods 

Procedure 

30 healthy adults will complete the study. Participants 
will first complete the equivalent noise task (Tibber et 
al., 2014). in which they are required to complete 150 
interleaved trials detecting either minimal changes in 
offset-from vertical (zero-noise) or global motion 
direction clockwise or anti-clockwise (high-noise). In 
the high-noise condition the direction of each globally 
moving dot is chosen from a Gaussian distribution with 
a mean of 45°. Noise levels will be titrated using a 
Bayesian Quest procedure to estimate levels of 
tolerable noise for each trial. Estimated levels of 
internal noise, sampling efficiency and maximum 
tolerable noise will be calculated and recorded using 
the equivalent noise function (Tibber et al., 2014). 
Participants will then complete a further 8 blocks of an 
EEG-adapted version of the EQN task. Dots move 
randomly for 500ms followed by global motion ±45° 
from vertical for 1500ms. External noise levels will be 
set at each individual’s maximum tolerable noise 
±33%. To isolate effects that cannot be attributed to 
external stimulus variability (Ratcliff, Voskuilen, & 
McKoon, 2018), each block is comprised of 60 unique 
stimulus configurations which are repeated three times 
in random order to give a total of 180 trials per block 
(See Figure 1) 

 

 

 

Figure 1: Task schematic for EEG-adapted 
experimental procedure. Dots move randomly followed 
by coherent global motion direction; in this case right. 

Each stimulus is repeated randomly three times 
through each block 

 

EEG 

128-channel continuous EEG data will be recorded on 
each block to measure electrical brain activity using an 
Active Two Biosemi system. Analyses will center 
primarily on the Centro-Parietal Positivity (CPP) which 
has been previously validated as a neural signature of 
evidence accumulation (O’Connell et al., 2012; 
Twomey et al., 2015). Consistent with the predictions 
of sequential sampling models and analogous single-
unit signals observed in monkeys, the CPP builds at 
an RT-predictive, evidence-dependent rate and 
reaches its peak at the time of the decision report. We 
will examine the time-frequency spectrum of the CPP 
and identify frequencies that are within the time-scale 
of a typical decision (>1Hz) and that discriminate 
between the three external noise levels. We will then 
examine if inter-trial variations in these frequency 
components impact on choice behaviour and if inter-
individual variations correspond to differences in the 
behavioural estimates of internal noise.  In parallel we 
will also examine signatures of motor-preparation 
(lateralized 11-30Hz beta-band activity). Muscle 
activity at the effector level will be measured using 
electromyography to record bursts of electrical muscle 
activity at the thumbs. Pupillometry eye-tracking data 
will also be recorded. Channels with substantial noise 
will be interpolated with reference to surrounding 
channels. Low and hi-pass filters will be applied, 
minimising frequencies above 40Hz and below 0.1Hz. 
This data is segmented into epochs from -300ms to 
2000ms from stimulus presentation and from -400 to 
300ms from response execution. Trials containing 
excessive muscle activity around the eyes measured 
through external VEOG channels above and below the 
eye are also removed. 

 

Results 

Thus far, one participant has completed two blocks of 
the final version of the experiment. Mean reaction 
times were 514ms for Low Coherence, 651ms for 
Medium Noise and 729ms for High Noise. Mean 
accuracies were 90.83% for Low Noise, 78.33% for 
Medium and 55% for High Noise. 

Preliminary analysis of electrophysiological data 
indicates an effect of coherence level on peak 
amplitude of the response and stimulus locked CPP’s 
(See Figures 1 & 2). Further analysis will investigate 
components of this build up and bound in relation to 
external noise level and pass number. 
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Figure 2: Stimulus-locked (-200ms to 1200ms from 
stimulus presentation) CPP collapsed across trials and 

split by noise level (blue = low, orange= medium, 
yellow = high). Dashed lines represent average 

reaction time for that condition. 

 

 

Figure 3: Response-locked (-400ms to 100ms from 
time of response) CPP by external noise level (blue = 

low, orange= medium, yellow = high). 

 
. 

Discussion 

The preliminary data confirm that the external noise 
manipulation has noticeable effects on behavioural 
and neural indices of decision formation. Future 
analysis on a fully collected sample will investigate the 
relationship between variability in neural signals and 
variability in behaviour on different passes of the same 
stimulus and in different noise conditions. Fast-Fourier 
Transforms of response and stimulus aligned CPP 
data will investigate high-frequency noise in the 
signals relatable to behavioural variability and stimulus 
noise. Furthermore, analysis of beta-band activity over 
the motor cortex and electromyographic activity over 
the decision-making hand will investigate the effects of 
within-trial noise on non-decisional components of the 
decision-making process. Analysis of alpha-band 
activity/pupil dilation will identify trial-by-trial 
fluctuations in attentional engagement as sources of 
noise in order to ultimately identify and isolate the 

influence of random, non-decision related within-trial 
noise 

Ultimately it is hoped that this work will make it 
possible to study within- and between-individual 
differences in internal decision noise, providing new 
insights into its effects on decision making and 
furnishing more refined models of decision making. 
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