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Abstract
Visual motion integration needs to resolve ambiguous
or conflicting information. While for most stimuli sub-
jects are able to perceive the stimulus motion correctly,
subjects fail to do so for motion illusion stimuli. In this
work we use such illusion stimuli, namely drifting Gabor
wavelets, to probe a hierarchical computational neural
model of V1-MT-MSTl for its mechanisms of motion inte-
gration via recurrent feedforward-feedback interactions.
We find that later stages are more susceptible to illu-
sory motion, while earlier stages closely capture the true
stimulus location. By lesioning of feedback connections
we show that the effect can be explained by feedforward
computation alone already. We conclude that cortical top-
down feedback within the employed model serves as a
predictive element besides taking part in linking informa-
tion across neural model columns.
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Introduction
Our visual system selectively integrates multiple related in-
puts and segregates them from unrelated ones. In the case
of motion input stimuli are often ambiguous (aperture prob-
lem) and even localized features need to be evaluated and
distinguished according to their intrinsic or extrinsic surface
belongingness. Since cells in area V1 only have small recep-
tive fields (RF), they only sense input components of grating
patterns, while area MT cells have larger RF and selectively
combine multiple responses with disparate velocity attributes
(Adelson & Movshon, 1982).

An open question remains how component inputs are inte-
grated, particularly at the stage of MT. Different stimulus con-
figurations have been used in various experimental investiga-
tions. For example, oriented bars of different lengths have
been used to evaluate the time to disambiguate the aperture
problem (Pack & Born, 2001; Born, Pack, & Zhao, 2002) while
other studies used plaids synthesized from gratings of differ-
ent velocity compositions to evaluate motion integration mech-
anisms such as vector average or intersection-of-constraints

(Adelson & Bergen, 1985; Welch, 1989). More recent inves-
tigations used multiple oriented bars presented apart or over-
laid to justify the selectivity of integration in area MT cells as
pattern- and component-direction selective (Smith, Majaj, &
Movshon, 2005; Majaj, Carandini, & Movshon, 2007).

Neural models have been proposed to explain the mech-
anisms of motion composition in the V1-MT-MST cascade.
Such models can be categorized as selectionist or integra-
tionist to account for the input features they utilize for motion
integration and disambiguation (Pack & Born, 2008). Mod-
els can be further distinguished into feedforward (Adelson &
Bergen, 1985; Rust, Mante, Simoncelli, & Movshon, 2006)
and recurrent feedforward-feedback approaches (Grossberg,
Mingolla, & Viswanathan, 2001; Bayerl & Neumann, 2004;
Tlapale, Masson, & Kornprobst, 2010). More recently, we
have proposed a model architecture composed of spiking neu-
rons for hierarchical motion analysis building upon detailed
findings about the response characteristics of V1, MT, and
MSTl cells and their recurrent and bottom-up and top-down
feedback interactions (Löhr, Schmid, & Neumann, 2019a). We
argue that the details of how component stimuli are integrated
into coherent motion percepts can be revealed in part by dis-
plays which contain conflicting local input motion configura-
tions. Freeman, Adelson, and Heeger (1991) showed that lo-
cal modulation of spatio-temporal phase of complex Gabor fil-
ters leads to apparent movement percepts. Variants of such
patterns have been utilized to experimentally probe visual mo-
tion perception (Tse & Hsieh, 2006).

In this work we make use of stimuli, that induce motion with-
out movement, as well as their composition into apparently
moving shapes. In particular we employ the curveball illusion
(Shapiro, Lu, Huang, Knight, & Ennis, 2010) to probe the rela-
tive influence of stationary and non-stationary movement com-
ponents (cf. Figure 1). The apparent inward/outward motion
(Whitney et al., 2003) is used to demonstrate the integration of
disparate movement evidences (cf. Figure 1). Such probing
of the neural model architecture for motion integration (Löhr
et al., 2019a) helps us to separate the contributions of differ-
ent model components to feedforward motion integration and
predictive integration along the feedback projections.
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(a) Stimulus, carrier
moves orthogonally to
envelope.

(b) MT activity at evenly
spaced points in time.

stim. V1 MT

(c) Trajectories of V1
(dashed blue) & MT (dot-
ted red) activity.

(d) Lesioned MT activity
at the same times as (b).
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(e) Trajectories of non-
lesioned (solid) and le-
sioned (dotted) V1 & MT.

wave inwards

wave outwards

(f) Stimuli, inward or out-
ward moving carriers.

(g) MT activity at tend for
inward stimulus.

stim. V1 MT

(h) Circles fitted to V1 &
MT for inward stimulus.

(i) MT activity at tend for
outward stimulus.

stim. V1 MT

(j) Circles fitted to V1 &
MT for outward stimulus.

Figure 1: (a-e) Stimulus and results of experiment I. (a) Stimulus is a Gabor patch (σ = 1.83px, ω = π/3px). Its envelope
moves vertically at 45px/s and its carrier drifts horizontally at 45px/s. (b) The spatial distribution of neuronal activity of MT
at five points spaced evenly in time. (d) Same as (b), but for the lesioned MT area. Color encodes direction of motion (inset)
and black denotes zero activity. (c) Trajectories of stimulus (solid black) and V1 (dashed blue) and MT (dotted red) neuronal
activity. (e) The effect of lesioning. Trajectories for the lesioned model (dotted) show a higher susceptibility for the drift component
as compared to the unlesioned model (solid). (f-j) Stimuli and results of experiment II. (f) Stimulus consists of four Gabor
patches (σ = 6.83px, ω = π/6px) on a circle of 40px radius. Envelopes are stationary but all carriers either drift inwards or
outwards at 64px/s. (g,i) Spatial distribution of neuronal activity of MT once for the inward and once for the outward stimulus
at the end of simulation. (h,j) Circles fitted to the stimulus (solid black) and to neuronal activity of V1 (dashed blue) and of MT
(dotted red) for both stimuli. At the end of simulation these fitted radii reach rV1

inw. = 37.1px and rMT
inw. = 28.8px for the inward and

rV1
out. = 43.8px and rMT

out. = 51.8px for the outward stimulus. (a-d) span the same coordinate space and so do (f-j).
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Figure 2: Neural model architecture of the visual cortex used
in our investigations. See Methods for details.

Methods

Neural Architecture of Visual Motion Integration

The model proposed by Löhr, Schmid, and Neumann (2019b);
Löhr et al. (2019a) consists of a hierarchy of areas V1, MT and
MSTl (Figure 2). Visual input to V1 is fed into neurons either
selective for static or moving oriented contrasts. At this stage
static and moving representations pose conflicting hypothe-

ses that suppress each other at the same spatial position. V1
oriented motion information pooled and smoothed over a lo-
cal neighborhood is fed into MT, where neurons are selective
for different speeds per orientation. MT’s different motion hy-
potheses take into account a lateral neighborhood and mutu-
ally compete via pooling to reach a consolidated state. The
consolidated representation of MT acts upon V1 via feedback
connections gradually guiding it, without completely supress-
ing the original locally available information. Spatial integra-
tion over local neighborhoods of V1 via MT and of MT via
MSTl and feeding back this integrated information are respon-
sible for spreading hypotheses accross spatial positions, but
only to neural sites where activity was present originally as
well (Löhr et al., 2019b, 2019a).

Each area is represented as hypercolumns at every spatial
position of the input. Hypercolumns are modeled by pairs of
excitatory-inhibitory spiking neurons. The coupling between
these can either be excitatory, inhibitory, or modulatory. The
interaction of these different types of input to a model neu-
ron happens by a dynamical process, described as ordinary
differential equations (ODEs), as formerly investigated by the
canonical neural circuits model (CNCM (Brosch & Neumann,
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2014)). The CNCM is a conductance-based model, that mod-
ulates feedforward excitatory input into excitatory cells by a
feedback signal and normalizes columnar responses via a
pooling mechanism established by inhibitory cells. This in-
teraction principle allows bottom-up information to be upregu-
lated by feedback. Feedback stems from higher order model
areas (top-down modulation), or in the case of MT additionally
from other spatial positions of the same area (lateral modula-
tion). So modulation together with inhibitory pooling leads to a
consolidation of the hypercolumnar representation. The con-
nectivity between neurons is modeled by weighting kernels (in
spatial, temporal and feature dimensions). Interactions are re-
alized as filtering operations using these kernels. The model is
implemented in MATLAB 2018a and an Euler scheme is used
to solve the ODEs. The parameterization and further details
on the model can be found in Löhr et al. (2019a).

Experiments

The experiments are inspired by psychophysical experiments
using drifting Gabor stimuli. In the model increased activity
codes for more important information. Model results are eval-
uated w.r.t (a) the readout of the population code of area MT
for the angle of the encoded motion to inspect how available
motion information is taken into account and (b) the position
of the center of mass of the population code of areas V1 and
MT to check for possible changes in spatial processing of the
stimulus along the visual hierarchy.

I - Curveball Illusion The first set of experiments is based
on the curveball stimulus Shapiro et al. (2010). The model is
shown a Gabor stimulus moving from the bottom to the top
while its carrier drifts from left to right (cf. Figure 1). Besides
the full model architecture a version with lesioned feedback
connections is investigated (cf. dashed connections in Figure
2), where all top-down feedback connections are cut.

II - Apparent Inward/Outward Motion For the second set
of experiments a stimulus is used similar to the one used by
Whitney et al. (2003). Responses are computed for the full
model on an input consisting of four stationary Gabor patches,
that are arranged on a circle (Figure 1). Two conditions are
simulated. One where all carriers are drifting inward and one
where all carriers are drifting outward w.r.t the center.

Results

I - Curveball Illusion

The center of mass of MT’s population response shifts grad-
ually over time from an initial position close the stimulus to-
wards one offset into the direction of the drift (Figure 1). This
is in accordance with psychophysical results from Shapiro et
al. (2010) in the case of peripheral stimulus representation.
Comparing responses of V1 and MT it becomes apparent,
that the positional displacement is much more pronounced in
MT than in V1. Moving up the visual model hierarchy the re-
sponse characteristic shifts from a more input-based one in
V1 to a more percept-based one in MT.

The overall orientation hypothesis of MT’s population re-
sponse is tuned to a superposition of the motion vectors
from the envelope’s motion and the drift vector of the Ga-
bor (Figure 1). Thus, the model shows the same integra-
tionist behavior as on previously tested stimuli by Löhr et
al. (2019b, 2019a). Here a common underlying mechanism
is able to integrate localized motion information, not just ex-
tracted across space from oriented contours (in the case of
Löhr et al. (2019b, 2019a)), but also extracted across differ-
ent components aligned in space. The model’s ability to do
so stems from its hierarchical architecture first extracting sim-
ple feature information (common to oriented contrasts, drifting
Gabor carriers and moving Gabor envelopes) and integrating
and consolidating it afterwards at a higher stage.

When lesioning V1 and MT their trajectories shift away
more from the curveball’s trajectory. Concerning the main
findings of the unlesioned model, that the higher stage MT
closer resembles the perceived, while V1 closer resembles the
true trajectory, hold as well for the lesioned case. Interestingly,
while MT’s response is biased towards perceived motion, its
feedback shifts V1’s activity closer towards the true trajectory
(Figure 1). Thus, the main finding can be explained by missing
feedback, that formerly projected back to lower levels of the
hierarchy at extrapolated positions, thus making predictions
of how the stimulus will move. In the full model this predic-
tion matched the envelope movement, while mismatched the
stationary drift component, since it didn’t move to the extrap-
olated position, guiding the representation towards the enve-
lope motion.

The lesion, thus, shows that the motion-induced position
shift can already be explained by feedforward processing of
the hierarchy alone without the need for feedback. We argue
that the main property forming the different displacements in
V1 and MT are the RF properties of either stage. While V1
has smaller kernels, that act directly upon the input, MT has
spatio-temporally more elongated kernels acting upon V1 re-
sponses. This stronger spatio-temporal elongation of model
MT’s kernels leads to an increased responsiveness of the MT
RF displaced in space and time. Since V1’s dynamical pro-
cesses give prolonged activities across the most recent posi-
tions which the curveball has passed, MT’s kernels respond
best if they are integrating with the respective displacement
their tuning dictates. This can be interpreted in such a way,
that MT’s kernels respond best at that position their tunings
hypothesize the motion to occur in the near future, thus ex-
trapolating from the recent input.

II - Apparent Inward/Outward Motion
Responses of V1 and MT at every patch location in the second
experiment are shifted along the drift direction of the station-
ary Gabor patches (Figure 1). This resembles results from
psychophysical investigations of Whitney et al. (2003), their
Figure 1. Again, a much more pronounced shift is found in
MT’s response, while the response of V1 more closely resem-
bles the true positions. This validates the findings concern-
ing the first experiment, while extending it to purely stationary
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configurations at the same time.

Conclusion
In the present work we showed how illusory motion stimuli can
be used to investigate hierarchical feedforward-feedback pro-
cesses in a computational model hierarchy of V1-MT-MSTl.
The performed simulations give new insights into the role of
the processing stages and their feedback connections. Lesion
studies of these connections reveal that the main findings of
our experiments can be explained by hierarchical feedforward
processing within the model. These findings together with the
discoveries of Löhr et al. (2019b, 2019a) show that feedback
most prominently serves to integrate and form a coherent rep-
resentation across spatially distributed information as well as
aligning activity by propagating a predictive representation to
earlier levels of the hierarchy.

The model was able to integrate information of curveball’s
different motion components, as well as of several disparate
stationary drifting Gabors. Further, we identified a stronger
resemblance of the true input stimulus motion by area V1 and
resemblance more closely related to illusiory motions and im-
plied shapes by area MT. The RF properties of MT led to a re-
sponse profile spatially extrapolating the detected motion. The
direction tuning of MT’s response showed clear integration of
different motion components of the stimuli giving exemplary
insight into how integrationist models are processing illusory
motion stimuli. This extends the findings of Löhr et al. (2019b,
2019a) from sets of spatially distributed motion information of
moving oriented contrasts.

Model MT’s response is torn towards illusory motion by
drifting Gabors. The model encompasses the extraction and
consolidation of available motion information by the visual cor-
tex, but doesn’t model the complete brain. This leaves am-
ple space for higher order processes to act upon this rep-
resentation, e.g. to alter percepts in foveal regions (Shapiro
et al., 2010) or to reorganize the activity distribution towards
the counterdirection of a drifting arrangement (Whitney et al.,
2003), and hence invites to further investigation.
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