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Abstract: 

Classically, visual processing is described as a cascade of 
local feedforward computations and Convolutional 
Neural Networks (CNNs) have shown how powerful such 
models can be. However, CNNs only roughly mimic 
human vision. For example, CNNs do not take the global 
spatial configuration of visual elements into account but 
often rely mainly on textures. For example, for CNNs, a 
face is not different from a scrambled version of it. For 
this reason, CNNs fail to explain many visual paradigms, 
such as crowding, where configuration strongly matters. 
In crowding, the perception of a target deteriorates in the 
presence of neighboring elements. Classically, adding 
flanking elements was thought to always decrease 
performance. However, adding flankers even far away 
from the target can improve performance, depending on 
the global configuration (an effect called uncrowding). 
We showed previously that no classic model of crowding, 
including CNNs, can explain uncrowding (Doerig et al., 
2019). Here, we show that Capsule Networks (CapsNets; 
Sabour, Frosst, & Hinton, 2017), combining CNNs, 
learning algorithms and recurrent object segmentation, 
explain both crowding and uncrowding. Contrary to 
CNNs, capsule networks use recurrent computations, 
which leads them to perform very similarly to humans, 
as we show with psychophysical experiments. These 
powerful recurrent networks offer a promising general 
framework to model global object shape recurrent 
processing.  

Keywords: Vision, Neural Networks, Capsule Networks, 

Crowding, Recurrent Processing 

Introduction 

The visual system is often seen as a hierarchy of local, 

feedforward computations (DiCarlo, Zoccolan, & Rust, 

2012). Low-level neurons detect basic features of stimuli 

such as edges. Higher-level neurons pool this information to 

detect higher-level features such as corners, shapes, and 

ultimately objects. CNNs have shown that these architectures 

can indeed excel in object detection. Despite the amazing 

range of tasks accomplished by CNNs, they only roughly 

mimic human vision. For example, they lack the abundant 

recurrent processing of humans (Kietzmann et al., 2019; 

Lamme & Roelfsema, 2000), perform differently than 

humans in many psychophysical tasks (Doerig et al., 2019; 

Funke et al., 2018), and are easily fooled by simple tricks 

(Geirhos et al., 2018; Su, Vargas, & Sakurai, 2019; Szegedy 

et al., 2013). CNNs base object detection decision mainly on 

texture-like features, while the human brain relies more on 

global object shape (Baker, Lu, Erlikhman, & Kellman, 

2018). 

Here we show that CapsNets (Sabour et al., 2017), a type of 

recurrent deep networks combining CNNs and recurrent 

object segmentation, can overcome the shortcomings of 

CNNs. To show object-level computations, we focus on 

surprising aspects of crowding. In crowding, perception of a 

target deteriorates in the presence of nearby flankers (review: 

Levi, 2008). Crowding is ubiquitous since elements are rarely 

seen in isolation. For example, a vernier target (i.e., two 

vertical lines separated by a horizontal offset; Figure 1) is 

presented. When the vernier is displayed alone, observers 
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easily discriminate the offset direction. When a single 

flanking square is added, performance drops, i.e., crowding 

occurs. Surprisingly, adding more flankers can reduce 

crowding strongly, depending on the configuration (Figure 

1a; Manassi, Lonchampt, Clarke, & Herzog, 2016). This 

configurational uncrowding effect occurs for a wide range of 

stimuli in vision, audition and haptics (review: Doerig et al., 

2019), showing the importance of understanding this 

phenomenon. We showed previously that these very strong 

configurational effects cannot be explained by models based 

on the classic framework of vision, including CNNs  (Doerig 

et al., 2019). A recurrent, flexible grouping and segmentation 

process seems crucial. Here, we show that CapsNets can 

naturally explain these complex configurational results.  

In CapsNets, early convolutional layers extract basic visual 

features. Recurrent processing then combines these features 

to group and segment objects from each other by a process 

called routing by agreement. Capsules are groups of neurons 

representing visual features and are crucial for this routing by 

agreement process. Low-level capsules iteratively predict the 

activity of high-level capsules in a recurrent loop. If the 

predictions agree, the corresponding high-level capsule is 

activated. For example, if a triangle capsule above a rectangle 

capsule are both active, they agree that the higher-level object 

should be a house and, therefore, the corresponding high-

level capsule is activated. Through this process, CapsNets are 

able to recognize overlapping digits (Sabour et al., 2017) and, 

as we show, to explain (un)crowding (Figure 1b). Crowding 

occurs when the target and flankers are represented in the 

same capsule. In this case, they interfere, because a single 

capsule cannot represent well two objects simultaneously due 

to limited neural resources. This mechanism is similar to 

pooling: information about the target is pooled with 

information about the flankers, leading to poorer 

representations. However, if the flankers are segmented away 

and represented in a different capsule, the target is released 

from the flankers’ deleterious effects and uncrowding occurs. 

This segmentation can only happen if the network has learnt 

to group the flankers into a single higher-level object 

represented in a different capsule than the vernier target. 

Segmentation is facilitated when more flankers are added 

because more low-level capsules agree about the presence of 

the flanker group.  

 

Figure 1: a. (Un)crowding: A vernier (two vertical bars with 

a horizontal offset) is presented in the visual periphery. The 

offset direction is easily reported (dotted red line; the y-axis 

shows the threshold, i.e., the minimal offset size at which 

observers can report the offset direction with 75% accuracy). 

When a square flanker surrounds the vernier, performance 

deteriorates- a classic crowding effect. When more squares 

are added, performance recovers (uncrowding). Critically, 

the uncrowding effect depends on the global stimulus 

configuration. For example, if some squares are replaced by 

stars, performance deteriorates again. It was shown that in a 

such displays with single lines of flankers, adding identical 

flankers usually leads to uncrowding. When the flankers are 

different (for examples a mix of squares and stars) does not 

usually lead to uncrowding. In more complex 2D displays, 

even arrays of different flankers can lead to uncrowding, 

depending on the configuration (Manassi et al., 2016). b. 

Segmentation and (un)crowding in CapsNets: If CapsNets 

can segment the vernier target away from the flankers during 

the recurrent routing by agreement process, uncrowding can 

occur. This is difficult when a single flanker surrounds the 

target because capsules disagree about what is shown at this 

location. But in the case of configurations that the network 

has learned to group, many primary capsules agree about the 

presence of a large shape group, which can therefore easily 

be segmented away from the vernier target.  

 

Methods & Results 

Experiment 1: Crowding And Uncrowding 

Naturally Occur In CapsNets 

We trained a CapsNet with two convolutional layers followed 

by to capsule layers to recognize greyscale images of vernier 

targets and groups of identical shapes. During training, either 

a vernier or a group of identical shapes was presented, and 

the network had to classify which shape type was present, the 

number of shapes in the group, and the vernier offset. 

Importantly, verniers and shapes were never presented 

together during training (i.e., there were no (un)crowding 

stimuli during training).  

When combining verniers and shapes after training, we found 

both evidence for crowding and uncrowding (Figure 2a). 

Small changes in network hyperparameters or stimulus 

characteristics did not affect this result. Reconstructing the 

input image based on the network’s output shows that 

(un)crowding occurs for the reasons described earlier: there 

is crowding when the target cannot be segmented from 

flankers, and uncrowding when the target is successfully 

segmented in its own capsule (Figure 2b). As we proposed, 

segmentation is easier when the network recognizes a large 

group of shapes.  
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a. Simulation results: Both crowding and uncrowding occur 

in capsule networks. The x-axis shows the various stimuli. 

Performance for these stimuli is shown on the y-axis as the 

%correct for stimuli with a line of five flankers minus 

%correct with only the central flanker. For example, in 

column a, vernier offset direction is easier to read out with 5 

square flankers than with 1 square flanker, as expected. Error 

bars are the standard error over 10 network trainings. The 

blue bars represent configurations for which uncrowding is 

expected (blue bars larger than 0.0 are in accordance with the 

human data) and orange bars represent configurations for 

which crowding is expected (orange bars smaller than or 

around 0.0 are in accordance with the human data). b. 

Reconstructions: We reconstruct the input image based on 

the output capsules’ activities. The reconstructions based on 

the two first “winning” capsules are shown. When the vernier 

is presented alone (top left), the reconstructions are good. 

When a single flanker is added (top right), the vernier 

reconstruction deteriorates (crowding) because the vernier is 

not well segmented from the flanker. When identical flankers 

are added (bottom left), the vernier reconstruction recovers, 

i.e., it is well segmented from the flankers (uncrowding). 

With different flankers (bottom right), the vernier is not 

represented at all in the two winning capsules (crowding).  

Experiment 2: Temporal Dynamics Of Uncrowding 

Naturally Occur In CapsNets 

We psychophysically investigated the temporal dynamics 

of (un)crowding and modeled the results with our CapsNet to 

study how time-consuming recurrent computations shape 

object formation. First, we performed a psychophysical 

crowding experiment with a vernier target flanked by either 

two simple lines or two complex cuboids (Figure 3). The 

stimuli were displayed for varying durations from 20 to 

640ms and five observers reported the vernier offset 

direction. For short stimulus durations, crowding occurred 

for both flanker types. Crucially, uncrowding occurred for the 

complex cuboid flankers only when stimulus duration was 

long enough (Figure 3). We hypothesize that this reflects the 

time-consuming recurrent computations necessary to 

segment the cuboid flankers away from the target. The line 

flankers cannot be segmented away from the target, so there 

is no uncrowding even for long stimulus durations. 

CapsNets explain this result by varying the number of 

iterations in the recurrent routing by agreement process 

(Figure 3). With more iterations, the cuboids are better 

segmented from the target and uncrowding occurs. The 

simple lines, however, are never segmented from the vernier 

because they strongly group with the vernier. This result was 

not affected by small changes in network hyperparameters or 

stimulus characteristics. 

 
Figure 3: Temporal dynamics of uncrowding: In 

humans, uncrowding occurs with cuboid flankers only after 

about 100ms of stimulus presentation (black). Uncrowding 

does not occur with single line flankers, even with long 

stimulus times (grey). We hypothesize that the cuboids are 

segmented from the vernier target through time-consuming 

recurrent processing (the line flankers are grouped with the 

target and cannot be segmented at all). CapsNets can explain 

these results by varying the number of recurrent routing by 

agreement iterations (blue and orange; the model’s %correct 

output is converted to a threshold-like measure through a 

linear function for visualization purposes: “threshold-like 

measure” = a*%correct+b). 

 

Discussion 

Powerful and flexible recurrent models are needed to go 

beyond current conceptions in vision science and AI. For 

example, flexible object segmentation is crucial for visual 

processing, but is absent from the architecture of CNNs 

(Doerig et al., 2019; Lamme & Roelfsema, 2000). Here, for 

the first time, we showed that CapsNets are able to explain 

complex, shape-level recurrent spatiotemporal processing in 

psychophysical experiments. 

Uncrowding can be used as an experimental probe to 

investigate how the brain flexibly forms object 

representations based on grouping and segmentation. Our 

results show that CapsNets are a good model of this process. 

Although other segmentation networks exist (e.g. Francis, 

Manassi, & Herzog, 2017), CapsNets are much more flexible 

and can be trained to solve any task. We focused on vernier 

experiments in this contribution, but the exact same 

procedure can plausibly explain (un)crowding and other 

shape-level recurrent processing with different stimuli, 

across different modalities.  

It is well known that humans can solve a number visual of 

tasks very quickly, presumably in a single feedforward pass 

of neural activity (such as analysing briefly viewed natural 

812



4 

 

scenes; Thorpe, Fize, & Marlot, 1996). In this regime, CNNs 

have been shown to be good models of visual processing 

(Khaligh-Razavi & Kriegeskorte, 2014; Kietzmann, 

McClure, & Kriegeskorte, 2018; Yamins et al., 2014). 

However, neural activities are not determined by the 

feedforward sweep alone: recurrent activity is also crucial 

and offers distinct modes of processing (Kietzmann et al., 

2019; Lamme & Roelfsema, 2000). For this, new models are 

needed. CapsNets naturally include both fast feedforward and 

time-consuming recurrent regimes, depending on the time 

allowed for routing by agreement. We showed how these two 

regimes in CapsNets explain previously unexplained 

psychophysical results: object segmentation depends on the 

presence or absence of recurrent computations, and, again, 

(un)crowding can be used as a probe into this process. 

In conclusion, CapsNets propose solutions to several 

shortcomings of CNNs: they are good candidates to capture 

and use global object shape, include a powerful and flexible 

segmentation process, and naturally link the feedforward and 

recurrent modes of visual processing. Although much work 

is needed to show the extent to which CapsNets match the 

human visual system, they constitute a promising alternative 

framework for vision.  
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