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Abstract

Multi-sensory integration is a fundamental problem for
any embodied cognitive system – both biological and ar-
tificial. We pursue a network diffusion approach to model
the flow of evoked activity, initiated by stimuli at pri-
mary sensory regions. In particular, we apply the Asyn-
chronous Linear Threshold (ALT) diffusion model on the
mesoscale cortical connectome of the mouse. The ALT
model captures how evoked activity at a given cortical
region ripples through the rest of the cortex. Our results
show that a small number of regions (the Claustrum being
at the top of the list) integrate almost all sensory informa-
tion paths, suggesting that the cortex relies on an “hour-
glass architecture” to integrate and compress sensory in-
formation before utilizing that lower-dimensionality repre-
sentation in association areas and higher cognitive tasks.
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work diffusion; hourglass architecture; Claustrum

Introduction

Consider a system that has several sensory inputs (e.g., vi-
sual, auditory, haptic) and that needs to encode, integrate and
compress this multi-modal stream into a consistent percep-
tual state before it can respond. Further, the environment may
be noisy and time-varying, and so any single sensory stream
may not be sufficient for robust perception. Both biological
and artificial intelligence systems must solve the problem of
Multi-Sensory Integration (MSI), and thus this is a fundamen-
tal problem for any embodied cognitive agent.

In the brain, MSI takes place across widely distributed
networks (Meredith, 2002; Stein, Stanford, Ramachandran,
Perrault, & Rowland, 2009). The neural basis of how sen-
sory streams are encoded, integrated and compressed is
an increasingly active research area in neuroscience (Meijer,
Mertens, Pennartz, Olcese, & Lansink, 2019).

In artificial agents, and in deep learning in particular, we
presume that it would not be sensible to perform MSI with
a monolithic, very deep network that operates directly on all
sensory inputs and learns all higher-level tasks at the same

time. Instead, a modular architecture in which different sub-
networks operate either on different sensory modalities or on
different tasks would be presumably easier to learn, adapt and
integrate. But how should this modular architecture be struc-
tured? Which are the salient structural principles and con-
straints it should satisfy? Can we get some insight from neu-
roscience?

The brain, and especially the mammalian cortex, is a hier-
archically modular system (Meunier, Lambiotte, & Bullmore,
2010). Different Regions of Interest (ROIs) in the cortex are
associated with different functions (unisensory, multisensory,
association, motor control, excutive control, etc). Additionally,
these modules are organized in complex hierarchies in which
together with the feedforward flow of information that starts
from primary sensory ROIs, there are also many feedback
connections from higher-level to lower-level modules, as well
as lateral connections between modules of the same hierar-
chical level (Markov et al., 2013).

Our high-level objective is to examine the modular archi-
tecture through which the cortex performs MSI, identify the
salient properties of this architecture, and to potentially ap-
ply these properties in the design of modular artificial neural
networks. In this work we focus on the first two steps of this
objective.

In particular, we rely on the mouse mesoscale connectome,
which has been mapped by the Allen Institute for Brain Sci-
ence (Oh et al., 2014). The connectome gives us the anatom-
ical substrate upon which we apply a network diffusion model.
We model the flow of evoked activity, initiated by stimuli at pri-
mary sensory ROIs, using the Asynchronous Linear Thresh-
old (ALT) model. ALT captures how evoked activity that orig-
inates at a given brain ROI “ripples through” the rest of the
brain. The weighted version of the ALT model assumes that a
node becomes active when more than a weighted fraction of
the neighboring nodes are active.

For a given activated source node, we calculate the acti-
vation time of all other nodes that participate in the cascade.
We then construct a Directed Acyclic Graph (DAG), dubbed
Activation-DAG (A-DAG), based on the nodes’ activation times
for each type of sensory stimulation. We analyze the result-
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ing A-DAGs to identify salient architectural properties of the
mouse cortex that enable MSI.

Our results show that a small number of cortical ROIs (the
Claustrum being at the top of the list) integrate almost all sen-
sory information streams. This suggests that the cortex relies
on an hourglass architecture (see Fig. 1). An hourglass ar-
chitecture has many input modules at one end of the archi-
tecture (one or more for each sensory modality), many output
modules at the other end (one or more for each cognitive or
motor task) and only a small number of core modules at the
waist of the architecture (Friedlander, Mayo, Tlusty, & Alon,
2015; Sabrin & Dovrolis, 2017; Sabrin, Wei, van den Heuvel,
& Dovrolis, 2019). The objective of those core modules is to
compute representations of the input space that are both effi-
cient (i.e., of low dimensionality compared to the inputs) and
accurate (i.e., they can capture almost all of the input vari-
ance). Further, these core modules tend to remain invariant,
even when there are changes in the input and/or output mod-
ules (Siyari, Dilkina, & Dovrolis, 2018).

To validate the ALT model, we use Voltage Sensitive Dye
(VSD) imaging data (Mohajerani et al., 2013). VSD data was
collected from mice while different sensory stimuli were intro-
duced to evoke responses in the visual, somatosensory (up-
per limb, lower limb and whisker), and auditory cortices. This
analysis corroborated the predictive power of ALT in modeling
diffusion of activity from specific source ROIs.

Figure 1: A hypothetical hierarchy with feedforward, feedback
and lateral connections between modules. Input information
is provided at sensory-specific modules, while the high-level
cognitive tasks are performed by task-specific modules at the
other end.

Summary of methods and results
The Allen Mouse Brain Atlas has 213 ROIs (Oh et al., 2014).
We consider a network of 67 ROIs that reside in the right
hemisphere of the isocortex, olfactory areas, hippocampal for-
mation and cortical subplate. The edge weights we consider
are referred to as “connection density” (Oh et al., 2014). This
metric is roughly proportional to the average number of axons
from the source ROI that target neurons connect to. We filter
the anatomical edges with p-value higher than 5%. We denote

the resulting 67-node weighted network by Nc; its density is
13%. Edge lengths are calculated by the Euclidean distance
between ROI centroids.

We model the diffusion of evoked neural activity using an
Asynchronous Linear Threshold model. The incoming neigh-
bors of a node (or set of nodes) are denoted by Nin(·). Initially,
the binary state of every node is set to 0, except a given pri-
mary sensory ROI whose state is set to 1. Subsequently, the
state of each node ni is updated asynchronously based on the
state of all its incoming neighbors’ Nin(ni), as follows:

si(t) = 1 if ∑
j∈Nin(i)

w jis j(t− t ji)> θ (1)

where θ represents the activation threshold, t ji the propaga-
tion delay from node j to i and w ji is the connection density
of the connection j→ i.

The sensory ROIs we consider as source nodes are: AUDp
(primary auditory), VISp (primary visual), GU (gustatory ar-
eas), SSp-n (somatosensory – nose), SSp-bfd (somatosen-
sory – barrel field), SSp-ll (somatosensory – lower limb), SSp-
ul (somatosensory – upper limb), SSp-m (somatosensory –
mouth), SSp-tr (somatosensory – trunk), and MOB (main ol-
factory bulb).

For each of these ten source nodes, we calculate the ac-
tivation time of all nodes that participate in the ALT cas-
cade. We construct a Directed Acyclic Graph (DAG), here-
after dubbed Activation DAG (A-DAG), based on the nodes’
activation time. The A-DAG includes an edge ni → n j if and
only if n j ∈ Nout(ni) and ta

j > ta
i + ti j, i.e., only those nodes

that contributed to the activation of n j should point to n j in the
activation DAG.

We have investigated the size of the cascade (number of
activated nodes in the cascade) for different values of θ. Inter-
estingly, either all nodes participate in the cascade or almost
none of them does. Thus, we set θ to the highest value that
causes a complete cascade (θ = 0.46 for MOB, which is the
only sensory ROI outside the isocortex, and θ = 0.98 for all
other sources). Complete cortical cascades of sensory ac-
tivity have been experimentally observed (Mohajerani et al.,
2013).

ALT is used to capture the activation propagation from a
local perturbation to the whole cortical network. This propa-
gation captures the first time the impact of a focal perturbation
reaches each ROI. We do not expect ALT to model any sub-
sequent feedback or sustained oscillations between ROIs.

We analyze the resulting A-DAGs based on the activation
paths that originate from sensory nodes (the source of each
A-DAG) and terminate at each sink node of that A-DAG. The
Path Centrality (PC) of each node is defined as the fraction
of source-to-target paths traversing the node across of all A-
DAGs.

We then compute the τ− core of the network i.e., the min-
imum set of nodes that covers at least τ% of all source-to-
target paths across all activation DAGs (Sabrin & Dovrolis,
2017). This NP-Hard problem is approximated by a greedy
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Figure 2: The first 10 activated nodes in the A-DAG of
the somatosensory-nose ROI (SSp-n), according to the ALT
model. Red edges are connectomic connections that partici-
pate in the activation cascade, while grey edges do not.

heuristic in which the node with maximum PC is removed from
the network in each iteration, joining the τ− core set. The PC
of the remaining nodes is updated after each iteration (Sabrin
& Dovrolis, 2017).

Interestingly, when we compute the τ− core for τ=90%
across all A-DAGs, we find only nine nodes. These core nodes
are listed in table 1. With each core node, we also list the frac-
tion of source-target paths it covers (“coverage”) when it joins
the core as well as its PC rank. The table identifies CLA, PTLp
and AUDv as the three most important ROIs for MSI – these
three ROIs cover more than 50% of the source-target paths in
the ten A-DAGs.

The claustrum (CLA) is known for its anatomical unique-
ness and its enigmatic function (Crick & Koch, 2005;
Van Horn, 2019) – Francis Crick had hypothesized that the
Claustrum plays a central role in the emergence of conscious-
ness. In an intriguing experiment, Koubeissi et al. (Koubeissi,
Bartolomei, Beltagy, & Picard, 2014) found that by delivering
electric pulses to CLA in a human subject, she was immedi-
ately driven to a “frozen state” in which she could not continue
a reading task – discontinuing the stimulation immediately re-
sumed normal behavior.

The posterior parietal associative area (PTLp) has strong
and direct connectivity to primary sensory ROIs and projec-
tions to motor areas, and it has been previously identified as
a “hub” in the responses from a variety of sensory stimulation
responses(Lim et al., 2012; Mohajerani et al., 2013; Nikbakht,
Tafreshiha, Zoccolan, & Diamond, 2018).

To examine the robustness of this hourglass observation,
we have examined whether the τ− core stays small, and
whether it consists of the same nodes, if we randomize the
underlying connectome. Randomizing the connection weights
and/or lengths, but preserving their distribution, does not have
a significant effect on the size or membership of the τ− core
– the hourglass waist is not affected. If we randomize the

Table 1: Core nodes across the ten A-DAGs (τ = 90%).

Node Description Coverage Rank
CLA Claustrum 24 1
PTLp Posterior parietal assoc. 19 3
AUDv Ventral auditory area 19 4
SSs Supp.somatosensory area 9 2
MOs Secondary motor area 8 5
ACAd Anterior cingulate - dorsal 6 16
VISl Lateral visual area 5 9
AOB Accessory olfactory bulb 4 7
ECT Ectorhinal area 4 22

topology of the connectome however, by swapping edges in a
degree-preserving manner, the τ− core doubles in size and
it changes significantly in membership. We conclude that it is
the architecture of the connectome, rather than the weights or
lengths of the connections, that are the primary reason behind
the hourglass structure of MSI.

We have used Voltage Sensitive Dye (VSD) imaging data
(Mohajerani et al., 2013) to examine the accuracy of the ALT
modeling predictions. VSD imaging enables neural population
activity monitoring over large cortical areas and in temporal
resolution of few milliseconds. Each VSD video corresponds
to a single sensory stimulation experiment on a mouse. The
resulting videos have 108 frames at a temporal resolution of
6.67ms. Each frame consists of 128× 128 pixels at the spa-
tial resolution of 50µm/pixel. We compare ALT to VSD im-
ages for five animals and five sensory stimulation types: visual
(VISp), auditory (AUDp), whisker (SSp-bfd), forelimb (SSp-ul)
and hindlimb (SSp-ll).

To assign an activation frame for each ROI in the VSD data,
we performed the following steps: 1) Find the peak signal for
each VSD pixel (the frame at which the peak activity is ob-
served). 2) Register the Allen Atlas ROIs to each animal’s
native space. 3) Find the activation frame for each ROI based
on the activation frame of the majority of that ROI’s pixels.

We then compare the temporal ordering of activated ROIs
between VSD experiments and ALT modeling. There are
three cases: 1) Temporal agreement comprises of all ROI
pairs for which ALT predicts correctly the experimental activa-
tion order. 2) Insufficient temporal resolution comprises
of all ROI pairs that appear to get activated in the same VSD
frame. 3) Temporal disagreement comprises of all ROI pairs
for which ALT does not predict correctly the experimental ac-
tivation order. The results are summarized in Fig. 3 – note
that the frequency of “temporal agreement” varies between
50-75% across five sensory stimulations and five animals per
stimulation – while the frequency of “temporal disagreement”
varies between 0-20%.

Brief discussion
The mechanism through which the brain integrates differ-
ent sensory inputs and reaches a stable unified perception
has been under investigation at different spatial and tempo-
ral scales, with classical works focusing on subcortical ROIs,
such as the Superior Colliculus (Wallace & Stein, 1997; Stein
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Figure 3: Percentage of ROI pairs that show temporal agree-
ment (green), insufficient temporal resolution (blue), and tem-
poral disagreement (red) for five different stimulation types (x-
axis labels) and five different animals (different symbols).

et al., 2009) to more recent larger scale foci (Toker & Sommer,
2019; Worrell, Rumschlag, Betzel, Sporns, & Mišić, 2017).
After compiling decades of MSI work, Meijer et al. con-
cluded that MSI research has been overwhelmingly focused
on behavioral-level integration of external stimuli and the as-
sociated micro-circuitry, and he proposed a shift of focus to
“a systems neuroscience approach, with rodents as the prime
model, to investigate how the neocortex combines sensory
stimuli of different modalities” (Meijer et al., 2019). This is
the line of inquiry we have followed here. We found that (a)
information flow originating from primary sensory cortices is
reasonably well predicted by a linear threshold-based network
diffusion model, (b) a small number of cortical ROIs integrate
and mediate almost all sensory pathways, and (c) these “core
nodes” are anatomically close to the primary sensory ROIs in
the cortex (not shown here due to space constraints).

These findings support the existence of an “hourglass ar-
chitecture” in the integration of multisensory information. The
benefit of an hourglass architecture is that it first reduces the
dimensionality of the inputs to a much lower dimensionality
latent representation at the “hourglass waist”, and second, it
re-uses those compressed intermediate-level features in more
than one higher-level tasks (Sabrin & Dovrolis, 2017).
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