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Abstract: 

We studied how a network of recurrently connected 
artificial units solve a visual perceptual decision-making 
task. The goal of this task is to discriminate the dominant 
color of a central static checkerboard and report the 
decision with an arm movement. This task has been used 
to study neural activity in the dorsal premotor (PMd) 
cortex. When a single recurrent neural network (RNN) 
was trained to perform the task, the activity of artificial 
units in the RNN differed from neural recordings in PMd, 
suggesting that inputs to PMd differed from inputs to the 
RNN. We expanded our architecture and examined how 
a multi-stage RNN performed the task. In the multi-stage 
RNN, the last stage exhibited similarities with PMd by 
representing direction information but not color 
information. We then investigated how the 
representation of color and direction information evolve 
across RNN stages. Together, our results are a 
demonstration of the importance of incorporating 
architectural constraints into RNN models. These 
constraints can improve the ability of RNNs to model 
neural activity in association areas.      
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Introduction 
As neuroscientists gain the capability to record from 

large populations of neurons and measure the 
connectivity between the population, there is a need for 
simplified descriptions that link these growing 
observations with the observed behavior (Gao & 
Ganguli, 2015). Recurrent neural networks (RNNs) 
trained through optimization to perform a behavioral 
task of interest are increasingly used as models for 
cognitive (Mante, Sussillo, Shenoy, & Newsome, 2013; 
Song, Yang, & Wang, 2016), timing (Goudar & 
Buonomano, 2018; Laje & Buonomano, 2013) and 
motor tasks (Hennequin, Vogels, & Gerstner, 2014; 
Stroud, Porter, Hennequin, & Vogels, 2018; Sussillo, 

Churchland, Kaufman, & Shenoy, 2015). In many 
cases, the artificial units of these trained RNNs have 
exhibited similarities with neural recordings from brain 
regions thought to be performing similar tasks. These 
networks can then be “reverse engineered” to 
understand how the RNN’s solution can be explained in 
terms of the representation of the internal units and the 
connectivity profile – the same goal as experimental 
neuroscience. 

 To date, the dominant approach is to use single 
trained RNNs as candidate models for a local, 
recurrently connected brain region. In line with this 
approach, we studied the properties of a single RNN 
trained to perform a perceptual decision-making task 
(Chandrasekaran, Peixoto, Newsome, & Shenoy, 2017; 
Wang et al., 2019). In this task, the monkey 
discriminated the dominant color of a central static 
checkerboard and reported his decision by reaching to 
a target whose color matched the dominant color of the 
checkerboard (Fig. 1a). Since the target configuration 
was randomized across trials, this task separates the 
action decision from the color decision. We wished to 
develop a model capable of replicating the responses in 
dorsal premotor cortex, an important decision-related 
brain region, during this task. In particular, we wished to 
replicate the observation that PMd neurons covary with 
the action decision, but not with the decision about the 
dominant color of the checkerboard (Chandrasekaran 
et al., 2017; Wang et al., 2019). 

After training the RNN to perform an analogous task, 
we found that the activity of the artificial units of our 
single RNN differed from recordings in PMd. In 
particular, units in the single RNN showed selectivity for 
both color and direction, suggesting that inputs to the 
dorsal premotor cortex differ from the inputs to the RNN. 
In the brain, decision-making arises from distributed 
interconnected circuits. Inputs into PMd are likely to 
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emerge from previous regions such as dorsolateral 
prefrontal cortex that transform color and target identity 
information.  

To more faithfully model this distributed network, we 
expanded our architecture into a multi-stage recurrent 
neural network (Michaels, Schaffelhofer, Agudelo-Toro, 
& Scherberger, 2017). We chose the connectivity of this 
network using published anatomical data regarding 
feedforward and feedback connectivity between PMd 
and frontal areas (Markov et al., 2014). With this 
modification, we found that the activity of artificial units 
of the last stage of processing more closely resembled 
activity in dorsal premotor cortex compared to the single 
RNN. Consistent with neural data recorded in PMd, the 
last stage of our multi-stage RNN model retained only 
direction related information and did not reflect signals 
related to the color of the checkerboard.  
 

Model description and training 
 

   Our RNN model was the standard rate model for 
neural networks (Sompolinsky, Crisanti, & Sommers, 
1988), shown below using the rectified nonlinearity 
𝑓(𝑥) = 𝑟𝑒𝑙𝑢(𝑥). We refer to x as the hidden state. The 
output y was defined as a linear readout of the rates 
f(x).  

t𝑥̇ = 	−𝑥 +𝑊/01𝑓(𝑥) +𝑊23𝑢 + 𝑏 (1) 
𝑦 = 𝑊678𝑓(𝑥) (2) 

 
   We generated synthetic data as illustrated in Fig. 1a. 
The inputs were a 4-dimensional vector, with the inputs 
denoting (1) the color of the right target, (2) the color of 
the left target, (3) the proportion of red squares, and (4) 
the proportion of green squares. In line with previous 
literature, we rescaled the proportion of red and green 
squares to compute the signed coherence, calculated 
as 100	 × 	(𝑅 − 𝐺)/(𝑅 + 𝐺), with R (G) denoting the 
number of red (green) squares.  A red (green) target 
was denoted by a value of -1 (+1). Thus, the inputs 
describe the target configuration and checkerboard 
color.  We added zero-mean Gaussian noise (SD = 0.1) 
to the checkerboard color inputs to model the noisy and 
time-varying perception of the static checkerboard. The 
output of the network was two decision variables 
accumulating evidence for a left and right reach. To 
train the network, we defined the desired decision 
variable output as 1 for the desired reach, and 0 for the 
undesired reach, after a 200ms delay from the 
presentation of the checkerboard. We optimized the 
parameters b, Wrec, Win, and Wout using 
backpropagation through time with Adam optimization 
(Pascanu, Mikolov, & Bengio, 2013) to minimize the 
mean square error between the desired output and the 
output produced by the network (Song et al., 2016).  

We used 100 units in each stage of our multi-stage 
model, and 300 units for our single RNN. We 
implemented Dale’s law with an 80/20 
excitatory/inhibitory ratio (Song et al., 2016). The 
network time-constant t was 50ms and when simulating 
the RNN, we used a first-order approximation of 
Equation 1 with step size of 10ms. When training the 
networks, we terminated training early to approximately 
reproduce the behavior of the animal. The RNN 
demonstrated similar psychometric and chronometric 
behavior as the animal, shown in Fig. 1b (compare with 
Fig. 1c).  

Results 
Single RNN 

After optimizing the single RNN to perform the 
perceptual decision-making task, we examined the 
PSTHs of example units of the single RNN (Fig. 2a). In 
these representative examples, we observed that some 
units modulate their rates to encode the color choice 
(Fig. 2a, left), direction choice (Fig. 2a, right), or a 
mixture. Consistent with these single examples, we 
found that the choice probability (not shown) for these 
units could be strong for color, direction, or both. 
However, in contrast PMd activity only shows units that 
encode direction (e.g., Fig. 2b (Chandrasekaran et al., 
2017)). 

We next investigated how the population was 
representing task information. To this end, we 
embedded the rates of the neural population from 
independent trials near movement onset (averaged 
from a 400ms window) using the tSNE dimensionality 
reduction technique (Van der Maaten & Hinton, 2008). 
We found that there were four separable clusters, 
organized by both the direction (dot vs x) and color of 
the reach (Fig. 3a). Importantly, the tSNE embedding is 

Fig. 1. Task design and behavior. (a) The task consists of a 
monkey reaching to the color of the target corresponding to 
the dominant color of the checkerboard. We modeled the task 
with four inputs, corresponding to the orientation of the targets 
and the color composition of the checkerboard, and two 
outputs, corresponding to decision variables for left and right 
reaches. The psychometric curve and corresponding reaction 
time curve of (b) the monkey, and (c) the network as a function 
of signed coherence. 
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unsupervised, with the labelling being performed 
afterwards to assist with visualization. The four 
separable clusters indicate that on the population level, 
the single network represented both color and direction 
information to solve the task. 

These results are in contrast to physiological 
recordings which suggest there is no representation of 
the dominant color in the checkerboard in PMd 
(Chandrasekaran et al., 2017; Wang et al., 2019) which 
was the region we were interested in modeling during 
this task. The absence of color representation in PMd 
suggests that PMd is receiving modified task related 
inputs to our single artificial RNN, possibly transformed 
upstream in areas such as the dorsolateral prefrontal 
cortex. 
Multi-stage RNN 

To test this hypothesis and allow for the flexibility for 
the task inputs to be modified before they reached the 
last layer of processing, we imposed architectural 
constraints so that instead of a single RNN, there was 
a multi-stage RNN. Our multi-stage RNN consisted of 
three stages of processing. The connectivity between 
the stages of the network was loosely based on 
published connectivity matrices between PMd and area 
9, and between area 9 and the dorsolateral prefrontal 
cortex (Markov et al., 2014). We trained the multi-stage 
RNN to reproduce the same behavior as the single 
RNN.  

Fig. 2c shows PSTHS of three neurons, one from 
each stage. In contrast to the single RNN, in the last 
stage of processing of our multi-stage model, we 
observed similar single-unit representations (Fig. 2c, 
right panel) to PMd. In particular, units in the last stage 
(Fig. 2c, right panel) did not demonstrate color 
selectivity, as evidenced by the separation of colors in 
the PSTHs. However, importantly, these units did 
demonstrate direction selectivity and also exhibited 
slower rate changes for less discriminable 

checkerboards, consistent with activity in PMd 
(compare Fig. 2c right and Fig. 2b). 
   Finally, when embedding the representation near 
movement onset in each of the three layers using tSNE,  
we observed only direction relevant information in layer 
3. This can be seen by the mixing of both red and green 
crosses and dots in the right panel of Fig. 3b suggesting 
that it is not possible to read out information relating to  
color from the activity in layer 3. In both layer 1 and layer 
2, we observed a mixture of color and direction related 
information. This visualization shows that the color 
information filters out before movement time in the third 
layer, indicating that the RNN no longer represents 
color but does maintain direction information. This 
provides a more faithful replication of activity in PMd. 

Discussion 
We observed that, when building a multi-stage RNN, 

color information was filtered by the last layer in the 

Fig. 2. PSTHs. Dotted lines denote left reaches and solid lines 
denote right reaches. Red (green) denotes reaches to the red 
(green) target, with darker shades corresponding to higher 
signed coherences. Example units from (a) single RNNs, (b) 
PMd data, and (c) multi-stage RNNs. 

Stage 2 Stage 3Stage 1
Multistage RNNSingle RNN(a) (b)

Fig. 3. tSNE embedding of RNN rates near movement time into a two-dimensional space. Trials to the right are denoted with an 
‘x’ and trials to the left are denoted by a dot. (a) For the single RNN, the four clusters indicate both color and direction information 
are represented, unlike recordings in PMd. (b) For the multi-stage RNN, in layer 1, there are unique clusters which correspond to 
an encoding of both direction and color information. By layer 3, there is only an encoding of direction information, consistent with 
PMd data. 
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multi-stage RNN suggesting that the internal 
representation has become useful to solve our 
perceptual decision-making task (i.e., provide the 
correct direction output). Interestingly, this is similar to 
what is observed in later stages of cortical processing. 
In PMd, the decision direction information is present, 
however the color information is no longer represented.  

Our multi-stage RNN makes several important 
physiological predictions. In particular, the results 
suggest that areas upstream of PMd should show 
mixed selectivity for both color and direction 
information. These representations are likely to be 
complex. We anticipate testing these predictions using 
recordings from dorsolateral prefrontal cortex and 
posterior parietal cortex. 

Our results also suggest that multi-stage RNNs might 
be a better way to model cognitive tasks that involve 
complex transformations of multiple inputs into 
behavioral outputs. For instance, this approach has 
already been useful in describing the dynamics of the 
grasp network (Michaels et al., 2017). 

Our results also appear to be related to recent 
theoretical results linking the performance of deep 
learning systems with the information bottleneck 
framework (Shwartz-Ziv & Tishby, 2017; Tishby, 
Pereira, & Bialek, 1999). These results suggest that the 
performance of deep learning systems depends on how 
subsequent stages of processing discard aspects of the 
input that are not necessary for the output, with each 
stage of processing becoming a more useful 
representation to produce the output (Achille & Soatto, 
2018). Our results, showing the multi-stage RNN no 
longer represented color information, seem to be 
consistent with these theoretical results. 

In order to provide neuroscientific insight and propose 
hypotheses as to how information may be filtered 
across stages in cortical processing, it is critical to 
understand how the learned weights allow for the 
propagation of information necessary for the output 
(e.g., direction) into the last stages of the network and 
filter out information unnecessary for the output (e.g., 
color).  Further, to potentially provide insight to deep 
learning systems, it is important to study how these 
representations evolve during learning.  
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