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Abstract
The exploration-exploitation dilemma is considered a fun-
damental but intractable problem in the learning and de-
cision sciences. At its crux is the search to maximize
reward. Here we challenge this view and show a way
around the dilemma by defining separate mathematical
objectives for exploration and exploitation. To make the
objective for exploration independent of reward, we de-
rive a set of general axioms for information value. Us-
ing these axioms we develop a greedy algorithm which
provably and optimally maximizes both information and
reward.
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Introduction
Exploration during behavior can have two very different ex-
planations depending on whether an animal or artificial agent
might receive a reward. If there is no reason to expect a re-
ward, exploration is treated as a search for novel or maximum
information (Mehlhorn et al., 2015). For example, when a rat
is placed in a new environment it will explore even if no tan-
gible rewards, like food and water, are present or expected
(Liu et al., 2019; Mehlhorn et al., 2015). If however reward
is expected an animal, and many artificial agents, will explore
and discover it (Mehlhorn et al., 2015). This exploration gets
interpreted as a search to maximize reward (Sutton & Barto,
2018).

An open problem in the decision sciences it to unified
both kinds of exploration. This is difficult in part because
exploration for reward leads to the intractable problem of
the exploration-exploitation dilemma, which is fundamental
(Thrun, 1992; Dayan & Sejnowski, 1996; Findling, Skvortsova,
Dromnelle, Palminteri, & Wyart, 2018; Gershman, 2018).

But is it really fundamental?

Results
We conjecture all exploration can be correctly interpreted as
a search for information. Reward value doesn’t matter.

If exploration is just a search for max information, then what
was the “dilemma” can be divided into two problems. One
problem is exploration (recast as the search for max informa-
tion) and the other is exploitation, which still means a search

for max reward. The focus of this paper is deriving a simple
greedy algorithm for solving both problems, simultaneously.

Information is not a reward
Diving the dilemma into independent parts is correct because
information and reward have opposing properties.

Rewards are a conserved resource, information is not. For
example, if a rat shares a potato chip with a cage-mate, it
must break the chip up leaving it less food for itself. While if
a student shares an idea with a classmate, that idea is not
divided up.

The value of information must decline with learning, while
the value of reward is constant. For example, knowing where
one potato chip is generally means going back and eating an-
other. Whereas if a student knows the capital of the United
States, there is no value to the student in being taught the
capital of the United States is Washington DC.

A definition of information value
To make our eventual solution general, we first need to sep-
arate reward value from information value in a principled and
general way. We do this axiomatically. Our axioms do not de-
pend on information theory nor on Bayesian reasoning, the
standard approaches (Friston et al., 2016; Haarnoja et al.,
2018; Itti & Baldi, 2009).

We reason that the value of any observation s made by an
animal or agent depends entirely on what an animal or agent
learns by making that observation–how it changes an animal
or agent’s memory.

We let a memory M be finite set whose maximum size is N–
defined over a finite state space s 2 S

N–whose elements are
added by an invertible encoder f , such that Mt+1 = f (Mt ,s)
and Mt = f

�1(Mt+1,s) and whose elements z from M are
recovered by a decoder g, such that z = g(M,s). The initial
memory M0 is said to be the empty set, M0 = /0 (Definition 1).

Our notion of memory is general. We don’t say anything
about the details of the encoder f , the decoder g, the numer-
ical properties of the individual states s in the state-space S

(other than S is finite). Nor do we require that what goes into
M (i.e., s) and what comes out (z) have any fixed relationship.

Axiomatic information value (E)

Axiom 1 (Axiom of Now). E depends only on difference dM

between Mt+1 and Mt .
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That is, the value of an observation s depends only on how
the current memory changes. Its history doesn’t matter.

Axiom 2 (Axiom of Novelty). E = 0 if and only if dM = 0.

That is, an observation that doesn’t change the memory has
no value.

Axiom 3 (Axiom of Scholarship). E � 0.

That is, all (new) information is in principle valuable even its
consequences are later found to be negative.

Axiom 4 (Axiom of Specificity). E is monotonic with the com-
pactness C of dM (Eq. 6) .

That is, more specific information is more valuable than less
specific information. (We use the mathematical idea of com-
pactness to formalize specificity.)

Axiom 5 (Axiom of Equilibrium). dM
2

dqs < 0
That is, using the parameters q learning in M makes continual
progress toward equilibrium (i.e. self-consistency) with each
observation and will approach a steady-state value of dM ! 0
and E ! 0.

Though they are formally independent, the axioms do bor-
row properties from Bayesian learning and information geom-
etry (Friston et al., 2016; Harper, 2009; Ly, Marsman, Verha-
gen, Grasman, & Wagenmakers, 2017; Itti & Baldi, 2009). As
a result, our definition of axiomatic value reduces to the KL
divergence/information gain (MacKay, 2003; Ly et al., 2017).
If that is, if one can assume the animals or agents memory is
Bayesian or otherwise a probability distribution.

Exploration as a dynamic programming problem
A nice solution to maximizing E would be a dynamic program-
ming solution. It would guarantee that total value (Eq. 2) is
maximized by a simple deterministic, locally greedy, algorithm.

In Theorem 1 we prove our definition of memory (Def. 1)
has one critical property (optimal substructure) needed for a
dynamic programming solution (Roughgarden, 2019). The
other two–E � 0 and the Markov property (Sutton & Barto,
2018)–are fulfilled by the Axioms 3 and 1 respectively.

To write down the Bellman solution for E as dynamic pro-
gramming problem we need some new notation.

Let a be an action drawn from a finite action space A
K . Let

time t denote an index t = (1,2,3, . . . ,•). Let p denote any
policy function that maps a state s to an action a, p : s ! a,
such that 8st 2 S,8at 2 A. Let d be a transition function which
maps (st ,at) to a new state st+1, d : (st ,at)! st+1 where once
again 8st 2 S,8at 2 A.

For notational simplicity we let E be redefined as F(Mt ,at),
a “payoff function” in dynamic programming jargon (Eq 1).

F(Mt ,at) = E(Mt+1,Mt)

subject to the constraints

at = p(st)

st+1 = d(st ,at),

Mt+1 = f (Mt ,st)

(1)

The value function for E is Eq 2.

VpE
(M0) =

h
max
a2A

•

Â
t=0

F(Mt ,at)
��� pE , M

i
(2)

To find recursive Bellman solution we decompose Eq. 2 into
an initial value F0 and the remaining series. When this decom-
position is applied recursively we eventually find an iterative
optimal and greedy solution. The steps for our decomposition
in terms of F and M are shown in Eq 4 and the result in Eq. 3.

V
⇤
pE
(M0) = max

a2A

h •

Â
t=0

F(Mt ,at)
i

= max
a2A

h
F(M0,a0)+

•

Â
t=1

F(Mt+1,at+1)
i

= F(M0,a0)+max
a2A

h •

Â
t=1

F(Mt+1,at+1)
i

= F(M0,a0)+V
⇤
pE
(Mt+1)+V

⇤
pE
(Mt+2), . . .

(3)

V
⇤
pE
(Mt) = F(Mt ,at)+max

a2A

h
F(Mt+1,at)

i
(4)

A note on exploration quality
Having a policy p⇤

E
that maximizes E also does not necessarily

ensure that exploration is of good quality. Relying on Axiom
6, Theorems 2 and 3 prove p⇤

E
also leads to a complete and

exhaustive exploration of any finite space S.

• Theorem 2. The optimal policy p⇤
E

must visit each state in
s 2 S at least once.

• Theorem 3. The optimal policy p⇤
E

must revisit each s 2 S

until learning about each state s until the memory reaches
equilibrium dM = 0.

Scheduling a way around the dilemma
To solve the dual problems we’ve posed–information and re-
ward maximization–we need an algorithm that can maximize
the total value of both objectives. We found a simple (if sur-
prising solution) in the computer science sub-field of optimal
scheduling.

There are range of optimal and useful reinforcement learn-
ing algorithms algorithm that operate on a discrete Markov
decision spaces (Sutton & Barto, 2018). In principle, any of
these are compatible with our approach. As a result we use
pR to denote any suitable reinforcement learning algorithm.

Animal or agent behavior is generally viewed as a fixed re-
source as one can only take one action at a time. With this
in mind, we imagine the policies for exploration and exploita-
tion act as two possible “jobs” competing for control of this
fixed (behavioral) resource. By definition each of these “jobs”
naturally produces non-negative values an optimal job sched-
uler could use. E for information or R for reward/reinforcement
learning. Each of the “jobs” takes a constant amount of time,
each policy only results in a single action a ⇠ A.
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The solution to scheduling problems that 1. produce non-
negative value and 2. have fixed run times is known to be
a simple greedy algorithm (Roughgarden, 2019). We restate
this solution as a pair of inequalities in Eq. 5.

pp =

(
p⇤

E
: Et � e > Rt

pR : Et � e  Rt

subject to the constraints

R 2 {0,1}
p(R)< 1

(5)

The fine print The inequality in Eq 5 ensures total value
summed over Et and Rt is maximized (Roughgarden, 2019).
It does not ensure each policy also maintains its own optimal-
ity. Specifically we’re interested in Theorems 2 and 3. We
ensure these hold by introducing two constraints the reward
distribution shown in Eq 5 (and which we prove are sufficient
in Theorem 4).

In stochastic environments learning in M may show small
continual fluctuations, mirroring the environmental dynamics.
These will of course get reflected in E fluctuations. To allow
Eq. 5 to achieve a stable solution we introduce e, a boredom
threshold for exploration. When Et < e we say the policy is
“bored” with exploration. To be consistent with the value ax-
ioms, e > 0 and E + e � 0.

To ensure the default policy is reward maximization, Eq. 5
breaks ties between Rt and Et in favor of pR.

The initial value E0 for p⇤
E

can be arbitrary with the limit
E0 > 0. In theory E0 does not change p⇤

E
’s long term behav-

ior, but different values will change the algorithms short-term
dynamics and so might be quite important in practice.

By definition a pure greedy policy, like p⇤
E

, can’t handle ties.
There is simply no mathematical way to rank equal values.
Theorems 3 and 2 ensure that any tie breaking strategy is
valid. However like the choice of E0, tie breaking can strongly
effect the transient dynamics.

Algorithmic complexity
The worst case run time for pp is additive in its policies. That
is, if in isolation it takes TE steps to earn ET = ÂTE

E, and TR

steps to earn rT = ÂTR
R, then the worst case training time for

pp is TE +TR, if that is neither policy can learn from the other’s
control. There is however no reason each policy can’t observe
the transitions (st ,at ,R,st+1) caused by the other. If this is
allowed, worst case training time improves to max(TE ,TR).

Summary
We show a way around the exploration-exploitation dilemma.
In our approach exploration is done only to maximize infor-
mation value, a quantity we define axiomatically. Maximizing
information value forces the animal to learn a general, reward-
independent, memory of the world. An important “side effect”
of this general learning is that reward learning improves to op-
timality.
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Mathematical Appendix.
Compactness
The compactness C of a hyper-cube has a simple formula,
C = P

2

A
where P is the cube’s perimeter and A is its area.

Therefore as Mt moves to Mt+1, the we can measure the dis-
tances {di,di+1,di+2, . . .dN} for all O  N observed states
Z, such that Z ✓ S and treat them as if they formed a O-
dimensional hyper-cube. In measuring this imagined cube we
arrive at a geometric estimate for the compactness of changes
to memory (Eq. 6).

C =

⇣
2ÂO

i
di

⌘2

’O

i
di

(6)

Information value as a dynamic programming
problem
To use theorems from dynamic programming (Roughgarden,
2019; Sutton & Barto, 2018) we must prove our memory M

has optimal substructure. By optimal substructure we mean
that M can be partitioned into to a small number collection
or series, each of which is an optimal dynamic programming
solution. In general by proving we can decompose some opti-
mization problem in a set of smaller problems whose optimal
solution is easy to find or prove, it trivial to prove we can also
grow the series optimally which in turns allows for direct proofs
by induction.

Theorem 1 (Optimal substructure). Assuming transition func-
tion d is deterministic, if V

⇤
pE

is the optimal information value
given by pE , a memory Mt+1 has optimal substructure if the
the last observation st can be removed from Mt , by Mt+1 =
f
�1(Mt+1,st) where the resulting value V

⇤
t�1 =V

⇤
t
�F(Mt ,at)

is also optimal.

Proof. Given a known optimal value V
⇤ given by pE we as-

sume for the sake of contradiction there also exists an alter-
native policy p̂E 6= pE that gives a memory M̂t�1 6= Mt�1 and
for which V̂

⇤
t�1 >V

⇤
t�1.

To recover the known optimal memory Mt we lift M̂t�1 to
Mt = f (M̂t�1,st). This implies V̂

⇤
> V

⇤ which in turn con-
tradicts the purported original optimality of V

⇤ and therefore
p̂E .

A greedy policy explores exhaustively
Our proofs for exploration breadth are really sorting problems.
If every state must be visited (or revisited) until learned, then
under a greedy policy every state’s value must–at one time or
another–be the maximum value.

Let Z be set of all visited states, where Z0 is the empty set
{} and Z is built iteratively over a path P, such that Z = {s|s 2
P and s 62 Z}.

Sorting requires ranking, so we define an algebraic notion
of inequality for any three numbers a,b,c 2 R are defined in
Eq. 7.

a  b ,9 c; b = a+ c (7)

a > b , (a 6= b)^ (b  a) (8)

Theorem 2 (State search – completeness and uniqueness).
A greedy policy p is the only deterministic policy which en-
sures all states in S are visited, such that Z = S.

Proof. Let E = (E1,E2, ...) be ranked series of E values for
all states S, such that (E1 � E2,� ...). To swap any pair of
values (Ei � E j) so (Ei  E j) by Eq. 7 Ei � c = E j.

Therefore, again by Eq. 7, 9
R

dE(s)!�c.
Recall : OLM < 0
However if we wished to instead swap (Ei  E j) so (Ei �

E j) by definition 6 9c;Ei + c = E j, as 6 9
R

d ! c.
To complete the proof, assume that some policy p̂E 6= p⇤

E
.

By definition policy p̂E can any action but the maximum leav-
ing k�1 options. Eventually as t ! T the only possible swap
is between the max option and the kth but as we have already
proven this is impossible as long as OLM < 0. Therefore, the
policy p̂E will leave at least 1 option unexplored and S 6= Z.

Theorem 3 (State search – convergence). Assuming a deter-
ministic transition function L, a greedy policy pE will resample
S to convergence as t ! T , Et ! 0.

Proof. Recall : OLM < 0.
Each time p⇤

E
visits a state s, so M ! M

0, F(M0
,at+1) <

F(M,at)
In Theorem 2 we proved only deterministic greedy policy

will visit each state in S over T trials.
By induction, if p⇤

E will visit all s 2 S in T trials, it will revisit
them in 2T , therefore as T ! •, E ! 0.

Optimality of pp
Theorem 4 (Optimality of pp). Assuming an infinite time hori-
zon, if pE is optimal and pR is optimal, then pp is also optimal
in the same sense as pE and pR.

Proof. The optimality of |pp can be seen by direct inspection.
If, p(R = 1) < 1 and we have an infinite horizon, the pE will
have a unbounded number of trials meaning the optimally of
P
⇤ holds. Likewise, ÂE < e as T ! •, ensuring piR will dom-

inate pp therefore pR will asymptotically converge to optimal
behavior.

In proving the total optimality of pp we limit the probability
of a positive reward to less than one, denoted by p(Rt = 1)<
1. Without this constraint the reward policy pR would always
dominate pp when rewards are certain. While this might be
useful in some circumstances, from the point of view pE it
is extremely suboptimal as the model would never explore.
Limiting p(Rt = 1) < 1 is reasonable constraint, as rewards
in the real world are rarely certain. A more naturalistic but
complex way to handle this edge case might be to introduce
reward satiety, and have reward value decay with repeated
exposure.
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