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Abstract
Juvenile myoclonic epilepsy (JME) is a network disorder
affecting brain activity and connectivity. However, it is
unclear whether JME leads to widespread abnormalities
in the network dynamics across different functional net-
works. Here, we used a pairwise maximum entropy model
(pMEM) and energy landscape analysis to characterize
network dynamics in MEG resting-state data and its ab-
normalities in JME. We fitted the pMEM to the MEG os-
cillatory power in three functional networks: the default
mode network (DMN), the frontoparietal network (FPN)
and the sensorimotor network (SMN). The pMEM provided
an accurate fit to the MEG data in both patient and control
groups. We then used pMEM-derived energy values to de-
pict an energy landscape of each network, with a higher
energy state corresponding to a lower occurrence proba-
bility. JME patients exhibited a lower number of local en-
ergy minima than controls, and had elevated energy val-
ues in the theta, beta and gamma-band of FPN oscillatory
activity as well as the beta-band DMN activity, but not in
the SMN. Our findings suggested that JME patients had
impaired multi-stability in selective functional networks
and frequency bands in the frontoparietal cortices.

Keywords: maximum entropy model; MEG; energy landscape;
juvenile myoclonic epilepsy

Introduction
Juvenile myoclonic epilepsy (JME) has been recognised as a
network disorder affecting brain activity and connectivity that
leads to cognitive impairments (Wolf et al., 2015). Electro-
physiological data suggests that JME has an impact on mul-
tiple functional networks, including the fronto-parietal network
(FPN), the default mode network (DMN), and the sensorimo-
tor network (SMN) (Clemens et al., 2013). However, it is yet
unclear whether JME patients had widespread or selective
abnormalities in the network dynamics across functional net-
works, and whether the abnormalities are frequency specific.

We addressed these questions by proposing a pairwise
maximum entropy model (pMEM) approach (Yeh et al., 2010)

to analyse MEG resting-sate oscillatory activity. PMEM is
a statistical model of the occurrence probability of network
states, which has previously been applied to the collective be-
haviour of spiking neural networks (Schneidman et al., 2006)
and BOLD fMRI responses (Ashourvan et al., 2017).

Here, We extended this theoretical framework to MEG os-
cillatory activity. Based on the fitted pMEM to individual par-
ticipants, we depicted an energy landscape for each of the
networks at theta (4-7 Hz), alpha (8-13 Hz), beta (15-25 Hz)
and gamma (30-60 Hz) bands. The energy landscape is a
graph representation of energy values from all network states,
with the graph’s connectivity described by an adjacency ma-
trix of regional activation states (Ezaki et al., 2017). We ob-
served that pMEM provided a good fit to the statistical regu-
larities of functional networks in both JME and control groups.
Furthermore, JME patients showed reduced numbers of local
energy minima and elevated energy values in the theta, beta
and gamma-band FPN activity and beta-band DMN activity,
but not in the SMN. These findings suggested anatomically-
and frequency-specific network abnormalities in JME.

Methods
Participants
26 JME patients were recruited from a specialist clinic for
epilepsy at University Hospital of Wales in Cardiff. 26 age-
matched healthy control participants were recruited from a re-
gional volunteer panel. The study was approved by the South
East Wales NHS ethics committee, Cardiff and Vale Research
and Development committees, and Cardiff University School
of Psychology Research Ethics Committee. Written informed
consent was obtained from all participants.

MEG source localization of oscillatory activity
5-minutes whole-head resting-state MEG recordings were
made using a 275-channel CTF radial gradiometer system at
a sampling rate of 600 Hz. Whole-brain T1-weighted MRI data
were acquired using a GE HDx 3T MRI scanner.

For each participant, the structural MRI scan was co-
registered to the MEG sensor space. The pre-processed MEG
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data was band-pass filtered into four frequency bands: theta
4-8 Hz, alpha 8-12 Hz, beta 13-30 Hz, and low-gamma 35-
60 Hz. For each frequency band, we computed the inverse
source reconstruction using LCMV beamformer. The atlas-
based source reconstruction was used to derive virtual sen-
sors for every voxel in each of the 90 regions of the Automated
Anatomical Label (AAL) atlas.

We focused our analysis on three networks: FPN, DMN and
SMN. Each network comprised of bilateral regions of interest
(ROIs) from the AAL atlas (Figure 1). For each ROI, its rep-
resentative time course was obtained from the voxel in that
ROI with the highest temporal standard-deviation. To calcu-
late the oscillatory activity, we applied Hilbert transformation
to each ROI’s time course, and computed the absolute value
of the analytical representation of the signal to generate an
amplitude envelope in each frequency band.

Figure 1: AAL-based ROIs for the FPN, DMN and SMN.

PMEM of MEG oscillatory activity
We fitted a pMEM to individual participant’s MEG data, sepa-
rately for each network and each frequency band. According
to the principle of maximum entropy, among all probabilistic
models, one should choose the one with the largest uncer-
tainty (i.e., entropy), because it makes minimum assumption
of additional information that would otherwise lower the uncer-
tainty (Yeh et al., 2010).

Consider a network consisting of N ROIs. We thresholded
the ROI’s Hilbert envelope according to the median of the am-
plitude. Data points above the threshold were denoted as high
oscillatory power (+1), and data points below the threshold
were denoted as low oscillatory power (-1). The oscillatory
activity in ROI i (i = 1, ...,N) at time t was transformed to a
binary time series ri(t), with ri(t) =+1 for high oscillatory ac-
tivity and ri(t) = −1 for low oscillatory activity. The network
state at time t is thus given by a N-dimensional binary vector
s(t) = [r1(t),r2(t), ...,rN(t)].

The N-ROI network has a total of 2N possible states sk
(k = 1, ...,2N). From the binarized MEG oscillatory activity,
we calculated the probability of occurrence of each network

state, denoted by Pemp(sk). We further estimated the empir-
ical average activation rate for each ROI 〈ri〉emp and all pair-
wise correlations between any two ROIs 〈rir j〉emp:

〈ri〉emp =
1
T

T

∑
t=1

ri(t), and 〈rir j〉emp =
1
T

T

∑
t=1

ri(t)r j(t), (1)

where T denotes the total number of time points in the data.
The fitting procedure aimed to identify a pMEM model that
preserves the constraints in Equation 1 and reproduces the
empirical state probability Pemp(sk) with the maximum entropy.
It is known that the pMEM follows the Boltzman distribution:

PpMEM(sk|h,J) =
exp(−E(sk))

∑
2N

k′=1 exp(−E(sk′))
, (2)

and E(sk) represents the energy of the network state sk, by:

E(sk) =−
N

∑
i=1

hiri(sk)−
1
2

N

∑
i=1

N

∑
j=1
j 6=i

Ji jri(sk)r j(sk), (3)

where ri(sk) refers to the binary value of ri for the network
state sk. h and J are the model parameters to be estimated
from the data. h = [h1,h2, ...,hN ] represents the bias of high
oscillatory activity in each ROI, and J = [J1,1,J1,2, ...,JN,N ]
represents the coupling strength between two ROIs. The
model predictions of the average activation rate 〈ri〉mod and
pairwise correlations 〈rir j〉mod are given by:

〈ri〉mod =
2N

∑
k=1

ri(sk)PpMEM(sk|h,J) (4)

〈rir j〉mod =
2N

∑
k=1

ri(sk)r j(sk)PpMEM(sk|h,J). (5)

We used a gradient ascent algorithm to iteratively update
h and J, until 〈ri〉mod and 〈rir j〉mod from the pMEM match
the constraints 〈ri〉emp and 〈rir j〉emp. In each iteration, the
updates of the parameters were given by hnew

i = hold
i +

ε(〈ri〉emp−〈ri〉mod) and Jnew
i j = Jold

i j +ε(〈rir j〉emp−〈rir j〉mod).

The learning rate ε was set to 10−8.

Energy landscape of resting-state networks
The pMEM defines the energy E(sk) of every network state
sk, and its value indicates the model prediction of the inverse
appearance probability of sk. If E(si)< E(s j), the pMEM pre-
dicts that the network activity pattern is more likely to be at the
state si than s j.

For each network and each frequency band, we depicted
an energy landscape as a graph of the energy function across
the 2N possible network states sk, characterising state prob-
abilities and state transitions from the perspective of attractor
dynamics (Watanabe et al., 2014). The energy landscape of a
network was defined by two factors: the energy E(sk) of each
network state, and an adjacency matrix defining the connec-
tivity between network states. Two states were defined to be
adjacent, or connected, if and only if one ROI of the network
had different binarized oscillatory activity (high vs. low).

846



Quantitative measures of energy landscape
We used two measures to understand the differences in the
energy landscape between JME patients and healthy controls.

1. The number of local energy minima A local energy
minimum was defined as the network state with a lower en-
ergy value than all its adjacent neighbouring states (Watanabe
et al., 2014). Because lower energy corresponds to a higher
probability of occurrence, network states of local minima can
be conceptualised as attractors in attractor dynamics.

2. The relative energy of the local minima We calcu-
lated the mean energy of each state sk across all participants.
The mean energy was used to depict an aggregated land-
scape, allowing to identify common energy minima shared be-
tween JME patients and controls. Because the shape of a en-
ergy landscape was partly determined by the global minimum
(Watanabe et al., 2014), for each participant, we calculated
the difference between a significant local minimum and the
global energy minimum (i.e., the lowest energy value). We
then compared this relative energy of the local minima be-
tween JME patients and controls. From the networks with sig-
nificant alternations of relative energy values in JME patients,
we constructed a disconnectivity graph to describe clusters
of energy minima and the relationships between them (Ezaki
et al., 2017), where the clusters represent groups of local min-
ima with higher probabilities of co-occurrence.

Results
Fitting of pMEM to MEG oscillatory activity
The empirical occurrence probabilities of possible network
states closely matched the model predictions from fitted
pMEM (R2 > 0.8 in all networks). We further used an ac-
curacy index to quantify the goodness of fit, which was calcu-
lated as the percentage of improvement of the pMEM fit to the
empirical data compared with a null model. The null model
assumed no pairwise correlation between ROIs (i.e., an in-
dependent maximum entropy model). The accuracy indexes
were high (> 80%) and did not differ significantly between
groups (F(1,50) = 2.71, p = 0.11), suggesting the robust-
ness of pMEM in both patients and controls.

Inferences from pMEM energy landscape
1. The number of energy minima We located local min-
ima on the pMEM-derived energy landscape. Because a lo-
cal minimum state has a higher occurrence probability than
all of its neighbouring states, transitions of network states
near an energy minimum is akin to a fixed point attractor in
a dynamic system, and the number of energy minima quan-
tifies the degree of multi-stability of a network. JME pa-
tients had significantly less local energy minima than controls
(F(1,50) = 5.27, p = 0.026). No significant network by group
(F(1.86,93.27) = 2.06, p = 0.14) or frequency band by group
(F(2.82,144.17) = 1.34, p = 0.26) interaction was observed.

2. The relative energy values of the local minima In
the FPN (Figure 2), the relative energy values at the lo-

cal minima were significantly higher in JME patients than in
controls in the theta-band (F(1,50) = 18.90, p < 0.0001),
beta-band (F(1,50) = 15.43, p = 0.0002), and gamma band
(F(1,50) = 7.2558, p = 0.009), but not in the alpha band. In
the DMN, the relative energy values were significantly higher
in JME patients than in controls in the beta-band (F(1,50) =
13.72, p = 0.0005). In the SMN, there was no significant
group difference in the relative energy values.

Discussion

We found that patients with JME showed altered pMEM-
derived energy landscapes in selective resting-state networks
and frequency bands. For the energy landscapes estimated at
the individual level, JME patients exhibited lower numbers of
local minima than controls. For the aggregated energy land-
scapes estimated across participants, JME elevated relative
energy values at the local minima of the FPN (theta, beta,
and gamma bands) and DMN (beta band) oscillatory activi-
ties, but not the SMN. Our results confirmed the abnormalities
of electrophysiological signals in JME, and provided new in-
sights into JME pathophysiology affecting selective functional
network configurations.

The fewer number of local minima and elevated energy val-
ues in JME suggested abnormalities in the multi-stable dy-
namics properties of the brain networks that may be prone
to perturbation and ictogenesis. The energy landscape fur-
ther allowed to characterise clusters of energy minima and
their hierarchies from the disconnectivity graphs. In the FPN,
the energy minima with bilateral high activation in the frontal
or parietal regions were clustered separately and interleaved
with lateralized energy minima (i.e., high activation in unilat-
eral ROIs). This may indicate that network states with lat-
eralized high activation represent transition statuses between
frontal and parietal dominant states. In contrast, all the DMN
energy minima contained co-activation in bilateral ROIs, con-
sistent with the evidence of strong interhemispheric and long-
range connectivity in the DMN during awake.

Interestingly, the MEG energy landscape measures of the
SMN did not differ significantly between JME patients and con-
trols. This might seem counter-intuitive, giving that motor cor-
tex hyperexcitability has been reported in JME (Badawy et al.,
2006). Nevertheless, previous research on resting-state func-
tional connectivity also showed the lack of altered connectivity
in the motor cortex in JME (Liao et al., 2011). Our results sug-
gested that the network states (i.e., patterns of co-activation)
in the SMN were not affected by JME during rest, this does
not rule out the possibility of network dysfunction in the motor
circuit under stimulation or perturbation.

Our study provides new methods for studying the dynamics
of MEG oscillatory activity. The pMEM has previously been
applied to quantify the dynamics of BOLD fMRI data (Watan-
abe et al., 2014). However, achieving satisfactory pMEM fit-
ting requires a large number of data samples. Because of
the low temporal resolution of the BOLD signal, the applica-
tions of pMEM for fMRI often need long scanning time that
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Figure 2: Activity patterns of significant conditions: theta, beta and gamma FPN and beta DMN. Top panel shows disconnectivity
graph of an energy barrier between pairs of local minima basins. Middle panel depicts anatomical location of the activity pattern
displayed by each local minimum. Grey box denotes low oscillatory activity (-1) and white box denotes high activity (+1). Bottom
panel represents T-value of pairwise t-test comparison between normalised energy values from JME patients and controls.
Asterisk above the bar means that the comparison was significant with p < 0.05 (Sidak corrected).

may not be practical for clinical populations, or to concatenate
data across participants that limits the possibility of individual-
level inferences. Here, we demonstrated that the high sam-
pling rate afforded by source-localised MEG data suited well
for the pMEM analysis, providing anatomically-specific and
frequency-dependent results. It is possible to apply our ap-
proach to investigate rapid changes of network energy land-
scapes during active tasks.

In conclusion, JME patients exhibited abnormal energy
landscapes of MEG oscillatory activity in selective brain net-
works and frequency bands, with less local energy minimal
and elevated energy levels leading to compromised multi-
stable network dynamics. These results have the potential to
be exploited in future diagnostic and pharmacological studies
for a mechanistic understanding of ictogenesis in JME.
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