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Abstract

Functional alignment is a method for finding similarity
in functional representations of both biological and ar-
tificial neural networks. Although it is actively devel-
oped in cognitive neuroscience and deep learning, each
field prefers its own terminology for and variants of this
method. There is, therefore, relatively little cross talk be-
tween the two spaces. In this brief review, we highlight
three functional alignment methods successfully used in
both fields: canonical correlation analysis, Procrustes
analysis, and shared response modelling. We consider
the relative strengths of each method and highlight situa-
tions in which each may be most appropriate. We con-
clude with open questions in functional alignment that
may serve as collaborative opportunities for cognitive
neuroscience and deep learning.
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Introduction

One of the fundamental challenges for cognitive neuroscience
is to find similarity across neural diversity (Churchland, 1998);
that is, to find shared or similar neural processes supporting
the diversity of individual cognitive experience. This goal is
not unique to cognitive neuroscience, however, and is in fact
shared across biological and artificial neural networks. In-
deed, it can be considered more generally as a problem of
aligning functional representations. For the purposes of this
work, we can define functional representations broadly as the
parameterization of internal states of a neural system that
carry informational content and thereby play a functional role
(Bechtel, 1998). Practically, we can treat them as activation
vectors within a high-dimensional space defined by e.g., the
neurons or voxels of the network (Churchland, 1998). In deep
learning, multiple random instantiations of the same neural
network architecture on the same data set will yield differ-
ent layerwise functional representations (Li, Yosinski, Clune,
Lipson, & Hopcroft, 2015). In neuroscience, anatomical vari-
ability and poor structure-function correspondence across as-
sociation cortex (Rodriguez-Vazquez et al., 2019; Paquola et
al., 2019) yields misaligned functional representations across
subjects for an identical stimulus, even following state-of-the-
art anatomical normalization.

Despite the immediate potential of functional alignment
methods, these tools are underutilized and often misunder-
stood within each field. Here, we review three methods used
in functionally aligning both artificial and biological neural
networks: Canonical Correlation Analysis (CCA), Procrustes
analysis (also known in the neuroscience literature as hyper-
alignment), and Shared Response Modelling (SRM). Expand-
ing on Barrett, Morcos, and Macke (2019), we argue that func-
tional alignment is a promising direction for collaboration be-
tween deep learning and cognitive neuroscience. We note
open questions in current formulations of functional alignment
and suggest future research directions that may benefit both
fields.

Canonical correlation analysis
As proposed by Hotelling (1936), Canonical Correlation Analy-
sis (CCA) was originally designed to deal with multi-view sam-
ples where we have two views on the same data; for example,
audio and visual recordings of the same speaker.

For input matrices X ∈Rn×p1 and Y ∈Rn×p2 , where n is the
number of samples (e.g., time points in fMRI), and p1, p2 are
the number of units (e.g., neurons or voxels) for each network.
Interestingly, the dimensionality of these matrices varies dra-
matically across fields, with neuroscience applications often
considering n and p to be in the range of 100-1000, while deep
learning applications consider n and p values in the range of
10,000-100,000.

When p1 ≤ p2, CCA derives a vector of canonical correla-
tion coefficients ρ = 〈ρ1,ρ2, ...ρp1〉. We can assume that the
matrices have been pre-processed to center their columns.
For a given index i, then, ρi can be defined as

ρi = max
ri
X ,r

i
Y

corr(Xri
x,Yri

Y)

subject to ∀ j<i Xri
X ⊥ Xr j

X

∀ j<i Y ri
Y ⊥ Y r j

Y

(1)

We can also consider this maximizing correlation as mini-
mizing distance (Xu, Lorbert, Ramadge, Guntupalli, & Haxby,
2012), in which case we can re-write CCA as

min
RX ,RY

‖XRX −Y RY‖2
F

subject to RT
X XT XRX = I

RT
Y Y TY RY = I

(2)
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In functional alignment of biological or artificial neural net-
works, where X and Y are sub-sampled from two subjects
(in the case of biological networks) or two initializations (in
the case of artificial networks), some concerns emerge in us-
ing generic CCA. In particular, since CCA maximizes these
canonical correlation coefficients, if the two data sources
share correlated noise we will learn a joint representation
driven by noise rather than signal. This is especially a concern
for functional magnetic resonance imaging (fMRI) data with its
low signal-to-noise ratio. Variants such as projection-weighted
CCA (Morcos, Raghu, & Bengio, 2018) and L2-regularized
CCA (Bilenko & Gallant, 2016) are thus designed to reduce
the influence of noise, though they adopt different strategies
in doing so.

These and related CCA variants have been successfully
used in functionally aligning both fMRI data (Bilenko & Gal-
lant, 2016) as well as deep neural networks (Raghu, Gilmer,
Yosinski, & Sohl-Dickstein, 2017; Morcos et al., 2018). Recent
work, however, has begun to ask whether CCA’s invariance to
invertible linear transformations is a desirable property in as-
sessing similarity (Kornblith, Norouzi, Lee, & Hinton, 2019).
In particular, Kornblith et al. (2019) show that for p2 ≥ n data
sets (e.g., wide convolutional network layers with more neu-
rons than examples in the training data set) similarity indices
that are invariant to invertible linear transforms gives the same
result. This is a common situation in neuroimaging, where the
number of voxels is often much greater than the number of
available examples.

Procrustes analysis
Named for Procrustes, the ancient Greek innkeeper who
stretched or cut off traveller’s limbs so they would fit his bed,
Procrustes analysis seeks to conform datasets through a se-
ries of rigid-body transformations (Schönemann, 1966). In the
case where p1 = p2, we can define an orthogonal rotation ma-
trix RX ∈ Rp×p such that we can

min
RX
‖XRX −Y‖2

F

subject to RT
X R = I

(3)

Although this is only defined in the case of exactly two data
sets, Procrustes analysis has been extended to a generalized
framework (Gower, 1975) wherein two or more data sets of
the same dimensionality can be compared by first aligning to
a reference subject and then iterating on this alignment. It was
this Generalized Procrustes Analysis which was introduced to
the neuroscience literature as hyperalignment in Haxby et al.
(2011).

Procrustes analysis has been used successfully used both
for aligning biological neural networks constructed from fMRI
data (Haxby et al., 2011; Guntupalli et al., 2016) as well as ar-
tificial neural networks (Smith, Turban, Hamblin, & Hammerla,
2017). Two constraints emerge in applying Procrustes anal-
ysis to these data types, however. The first is that data sets
must be of equivalent dimensionality. Thus, for example, con-
volutional neural network (CNN) hidden layers must have the

same width to be aligned using Procrustes transformations.
The second constraint is that each minimal unit (i.e., voxels
in fMRI data or neurons in CNN hidden layers) is considered
in the analysis, meaning that very large data sets often suffer
from estimation problems. In particular, we need≥ p samples
for the estimation to be well-posed; this is rarely the case in
fMRI studies, where our sampled time points n� p. To date,
investigators have circumvented this issue by performing func-
tional alignment only in anatomically- or functionally-defined
regions of interest.

Shared response modelling
A more recently proposed method is Shared Response Mod-
elling (SRM; P.-H. Chen et al., 2015). The intuition is that
rather than aligning networks individually, we now want to de-
velop a common basis set or coordinate system into which we
can project additional networks.

Thus for m subjects, we want to learn an individual transfor-
mation basis W ∈ Rp×k and a common or shared time series
S ∈ Rk×n, where k is an experimenter-selected parameter to
control the dimensionality of the model. As before, p is the
number of units (e.g., neurons or voxels) in the network and
n is the number of samples (e.g., time points in an fMRI anal-
ysis). Because all subjects are considered simultaneously in
learning the shared response, the data matrix X now contains
sub-matrices for each subject i such that Xi ∈Rp×n. Note that
since all subjects are included in X , there is thus no longer a
need for the Y matrix. For subject i, then, we want to learn

min
Wi,S

Σi ‖Xi−WiS‖2
F

subject to W T
i Wi = Ik

(4)

For a fixed S, this formulation resembles (3) but with the
transformation matrix–RX in (3), Wi in (4)–now applied to the
second term rather than the first. These two formulations are
in fact equivalent when the experimenter-selected dimension-
ality k is equal to the number of minimal units (i.e., voxels or
neurons) p1. However, in the case where k < p1, applying the
transformation matrix directly to the subject data Xi leads to
an uninformative shared response S (P.-H. Chen et al., 2015).

SRM has been successfully used in aligning both fMRI data
(J. Chen et al., 2017) as well as deep neural networks (Lu
et al., 2018). Like CCA, SRM has the advantage that the
layer width or number of voxels considered does not need to
be equivalent across networks. Similarly to SVCCA, a CCA
variant developed by Raghu et al. (2017), learning the hy-
perparameter k also provides researchers an understanding
of how many directions meaningfully contribute to the align-
ment. Nonetheless, the problem of hyperparameter selection
requires cross-validation to assess its impact on the learned
shared response, potentially requiring more data than avail-
able in standard analyses.

Current recommendations
Although each of the considered methods have been used in
functionally aligning both artificial and biological neural net-
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Table 1: Summary of functional alignment methods used to date.

Method Quantify dimensionality Tunable hyperparameters

Canonical Correlation Analysis In SVCCA In rCCA

Procrustes Analysis 7 7

Shared Response Modelling 3 3

works, their relative use differs dramatically across fields.
CCA shows higher popularity in deep learning than in neu-
roscience, while Procrustes analysis (under the name hyper-
alignment) and SRM are more consistently used in neuro-
science research. Although this disparity is due in part to
non-overlapping terminology between the two fields, there are
also field-specific constraints which in part guide these deci-
sions. For example, one of the advantages of CCA is that data
set sizes do not need to match exactly. This is more likely to
appeal to deep learning researchers as it enables compari-
son of layers with different widths. Neuroscience researchers,
however, are more likely to work with regions-of-interest from
functional or anatomical parcellations that are standardized to
the same number of voxels.

We hope, however, that this brief review will introduce re-
searchers to the range of functional alignment methods avail-
able, enabling them to use those methods that best match
their data set and research question. To this end, we have
summarized some of the key features for each method in Ta-
ble 1. Although these follow our understanding of functional
alignment methods as they exist today, there are still several
open questions which we draw attention to here.

Open questions and discussion
In considering current methods for functional alignment, at
least two immediate questions arise. The first is what kind
of similarity we should be assessing and what are the trans-
formations to which these scores should be invariant; for ex-
ample, whether we should allow for isotropic scaling of repre-
sentations during alignment as in CCA, and therefore how to
choose a similarity measure for a given use case. The sec-
ond question is how to interpret calculated similarity. Deriv-
ing a ”similarity score” could be useful for diagnosing network
architecture and performance or for comparing experimental
conditions; however, its interpretation after hyperparameter
optimization is unclear. We review each of these questions
in turn.

What kind of similarity metric should we use?
The question of what kind of similarity we should be exam-
ining is a fundamental one, with connections to many other
mathematical fields such as clustering (Estivill-Castro, 2002).
In their recent work, Kornblith et al. (2019) argue that sim-
ilarity should not be invariant to invertible linear transforma-
tion. Besides the practical problem of data set size outlined
above, choosing similarity metrics that are invariant to invert-

ible linear transformation implies that the scale of activation
space is irrelevant. That is, that representations that are only
similar on small eigenvalues should have the same similarity
index as representations that are only similar on large eigen-
values. The success of deep learning methods such as style
transfer suggest that these distances are meaningful, however
(Dumoulin, Shlens, & Kudlur, 2016). Neuroscience has only
begun to quantify the dimensionality supporting similar repre-
sentations (Ahlheim & Love, 2018), but we argue that a similar
case is likely to hold for this field as well.

Should we define or improve similarity?

Hyperparameter selection in SRM or regularized CCA
(Bilenko & Gallant, 2016) significantly improves our ability to
transfer functional representations between networks. Unfor-
tunately, it also obscures the definition of similarity. For exam-
ple, many deep learning researchers use functional alignment
in order to gain insight into the development of functional rep-
resentations across training. In this case, a summary statistic
of similarity can be meaningfully used to learn how different
training regimes such as freeze training impact learned rep-
resentations. If similarity is not only calculated between two
networks, however, but optimized as in SRM then the interpre-
tation of such a metric and its use across data sets is unclear.

Although a future alignment method may develop which
preserves interpretability while maximizing similarity, we ar-
gue that such an extension is unlikely. Instead, we sug-
gest that researchers carefully consider what they hope to
learn from functionally aligning their networks and to choose
a method which best meets their research goals with a clear
understanding of the methods specificity and differences.

Conclusions

Functional alignment methods are being actively developed
in both cognitive neuroscience and deep learning, though to
date these research programs have been pursued largely in
parallel. We argue, however, that there is substantial over-
lap and opportunities for collaboration in exploring the align-
ment of biological and artificial neural networks. Indeed, future
investigations directly aligning these two kinds of networks
seem close at hand. We hope that developing a common lan-
guage for and implementations of these methods will inspire
scientists to bridge this gap.
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