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Abstract
Swap-errors occur in working memory (WM) tasks when a
wrong response is in fact accurate relative to a non-target
stimulus. These errors reflect the failure to bind in mem-
ory the conjunction of features that define one object,
and the mechanisms implicated remain unknown. Here,
we tested the mechanism of synchrony across feature-
specific neural assemblies. We built a biophysical neural
network model for WM composed of two 1D attractor net-
works for WM, one representing colors and the other one
locations. Within each network, gamma-oscillations were
induced during bump-attractor activity through the inter-
play of fast recurrent excitation and slower feedback inhi-
bition. These two networks are then connected via weak
excitation, accomplishing color-location binding through
the selective synchronization of pairs of bumps across
the networks. Association-encoding was accomplished
by stimulating simultaneously the corresponding bumps
in each network, and feature-decoding by stimulating the
cued location with a .5s pulse, which impacted strongly
the corresponding phase-locked bump. In some simula-
tions, “color bumps” abruptly changed their phase rela-
tionship with “location bumps” from which we derived
a neural prediction: swap-errors are associated with a
lower phase consistency of oscillatory activity in the de-
lay period. Finally, we tested this prediction in MEG
recorded from n=30 humans.
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Working memory load modulates oscillation
power and frequency

We built a computational network model of a local neocortical
circuit, with excitatory and inhibitory spiking neurons (leaky
integrate-and-fire neuron model) connected reciprocally via
excitatory AMPAR-mediated and NMDAR-mediated synapses
and inhibitory GABAAR synapses. The network model was
tuned to support bump attractor dynamics with 3 simultane-
ous bumps (Edin et al., 2009), and further tuning of the rel-
ative weights of AMPAR and NMDAR-mediated currents set
active reverberant neurons in the oscillatory regime (Compte,
Brunel, Goldman-Rakic, & Wang, 2000). Using this computa-
tional model we started by investigating which dynamics were
originated within each network. In our model, multiple bumps

Figure 1: Multiple bumps are spontaneously anti-correlated.
a) Top row, raster plots of 3 example simulations of load 1,
2 and 3. Middle. Zoomed version of simulations on the top
show clear oscillatory activity, confirmed by cross-correlation
functions (bottom). For the load 1 case, we computed the
auto-correlation. Notably, irregular activity due to external
noise coexists with markedly oscillatory dynamics. b, c) Load-
modulation of network and bump oscillatory dynamics. Power
spectrum computed from simulations of increasing load (1-3)
using the activity of the whole network b) or of each bump’s
activity, c).

show anti-correlated oscillatory activity (Figure 1). As we store
more bumps in the network, lateral inhibition originating from
simultaneous memories establishes anti-phase dynamics dur-
ing the memory period. Moreover, we found that the anti-
phase behavior was robust in a wide range of values for AM-
PAR recurrent conductances (not shown, but see Figure 3 for
the same robustness analyses for the full, connected model).
To study load-dependent change in network dynamics, we ran
multiple simulations with 3 different loads (presenting 1, 2 and
3 separate bumps during the encoding cue period) and we
computed power spectra from either the aggregate activity of
the whole network (network power) or from separate popula-
tions centered around each presented target (bump power).
We found signatures of two different scenarios (Figure 1b,c).
As we increase the memory load, the overall network activ-
ity oscillates at slightly increasing frequencies (Figure 1b). In
contrast, each bump, corresponding to different memories, os-
cillates at markedly slower frequencies as load increases (Fig-
ure 1c). Thus, as shown before (Compte et al., 2000), the in-
terplay between recurrent (fast) excitation and (slower) feed-
back inhibition acting locally is the basis of the bump oscilla-
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Figure 2: Feature-binding through weak, uniform coupling. a)
Schematics of the final 2-network architecture, consisting of 2
ring-attractors with all-to-all, uniform connectivity. Each ring is
able to store memories from one feature space (e.g. color or
location) as activity-bumps. b) One example simulation for
the two networks. The red-shaded area marks the period
in which we read out the activity of the entire color network,
while injecting current at one specific location in the location
network (right gray-shaded area in the location rastergram,
see main text for details about encoding/decoding). c) Cross-
correlation computed between 2 pairs of bumps across net-
works (as marked with dashed red and black lines in panel b).
For the black association, the cross-correlation peak is posi-
tive. In contrast, the cross-correlation peak was negative for
the red association. d) Spike count correlation (in count bins
of 5 ms, windows of 100 ms) of both associations through the
memory delay is stable for this simulation.

tory behavior. Moreover, we now show that anti-phase dynam-
ics of simultaneous bumps occurs due to bump competition,
accomplished by lateral inhibition. Intuitively, this competition
increases with memory load, leading to longer periods of si-
lence during the delay-activity of each bump.

Uniform coupling achieves feature binding
How the conjunctions of different visual features are kept in
mind is a long standing question in cognitive neuroscience
(Schneegans & Bays, 2018) - the so called binding prob-
lem. However, there is consolidating evidence that different
features of complex objects are maintained in independent
stores (Schneegans & Bays, 2018). This suggests that differ-
ent ring-attractors could be storing independent features, say
1 ring representing and memorizing colors and another ring
storing locations (Ma, Husain, & Bays, 2014). However, how
these networks should interact to accomplish feature-binding
is unclear. Here, binding between color and location is accom-
plished through the synchronization of pairs of bumps across
two networks connected via weak cortico-cortical excitation
(Figure 2). In particular, we connected two ring-attractors in
the regime described above with all-to-all, untuned excitatory
connectivity. This connectivity was weak and it was medi-
ated exclusively by AMPARs (Figure 2a), acting on all excita-

Figure 3: Anti-correlated oscillatory dynamics as a function
of excitatory recurrence (AMPAR conductance) in simulations
with load 2. a) Anti-phase dynamics within each network
as measured by spike count correlation between bumps. b)
Peak-frequency of power spectrum of the cross-correlation
between the two bumps. c) Bump strength measured as
spike-count variability at the end of the the delay. e-g) sum-
marizes the dynamics of 22,000 simulations (total) of 100x2
networks.

tory and inhibitory neurons. Interestingly, anti-phase dynam-
ics within each network (as described above) was maintained
robustly for a wide range of connectivity strength values (Fig-
ure 3). Across networks, each bump’s activity was in phase
with one bump in the other network (Figure 2b,c, black) but
out of phase with the other (Figure 2b,c, red). On the majority
of the simulations, this selective synchronization was main-
tained through the whole delay period (see Figure 2c,d for an
example simulation). This dynamics is therefore interesting
as a possible mechanism to maintain bound the information
of each presented stimulus.

Encoding/decoding through rate-code

In our simulations, synchronization selection was noise-
induced, resulting in across-networks associations between
random pairs of bumps for different simulations. To control this
association at the time of stimulus encoding, we stimulated
strongly and simultaneously 1 bump in each network for a brief
period of 50ms (Figure 2b, and Figure 4a, green period), forc-
ing these 2 bumps to engage in correlated activity during the
delay period. Nevertheless, this phase-locked dynamics could
be broken by noisy fluctuations, leading to possible misbinding
of memorized features and swap trials (Figure 4a,b). Finally,
our model raised the question of how this binding of informa-
tion could reasonably be decoded without resorting to com-
plex mechanisms for spike coincidence detection (Shadlen &
Movshon, 1999). In our simulated task, the behavioral output,
which consisted in answering which color was initially associ-
ated with a particular location, should depend on evaluating
the pair of bumps in the 2 networks that maintained in-phase
synchronization at the end of the delay. This was simulated
as follows. For each trial, we probed one location by injecting
external current to corresponding neurons in the location net-
work at the end of the delay. This simulated the presentation
of a location probe at the end of the delay, as typically done
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Figure 4: Encoding and decoding is accomplished without
temporal precision. a) Spike-count correlation during the de-
lay for 20 simulated trials. b) Histogram from 1000 trials.
Bumps bound during encoding were more likely to be read-
out than unbound bumps (target vs non-target). c) Same as
a), averaging separately for swap and on-target trials, as de-
fined by the decoder. d) Spike-count correlation between cor-
rect pairs. e) Peak-frequency of power spectrum of the cross-
correlation between bound pairs, across networks.

in multi-item working memory tasks (Ma et al., 2014). This
external current increased the firing rate in one of the location
bumps, and we found that it also resulted in an increase of
activity of the associated, in-phase color bump.

Finally, we extracted the behavioral output with a maximum
likelihood decoder applied on mean firing rate activity of the
color network during the last .5 s, while probing the corre-
sponding location in the location network as described above.
This algorithmic read-out could be replaced by a biologically
plausible downstream network connected to the color circuit,
and tuned to be in a winner-take-all regime - i.e. only able
to maintain one bump at a time. Figure 4b shows 1,000
of such simulated trials. Applying our encoding/decoding
method to our simulations, results in 30% of trials wrongly
associated with the non-target color (swap trials, Figure 4c).
We then separated swap trials from on-target trials and com-
puted the spike-count correlation in windows of 5 ms through
the whole trial period (Figure 4c), and confirmed that on-target
trials were in fact characterized by stable phase-locked activ-
ity, while the correlation between bumps in swap trials pro-
gressively approached the opposite dynamics (in-phase/anti-
phase for the bound/unbound items, Figure 4c). Together, our
biologically-constrained simulations demonstrate that feature-
binding can be accomplished through selective synchroniza-
tion. Crucially, encoding/decoding location-color associations
was done without a temporally precise code, a long-standing
limitation in the binding by synchrony framework (Shadlen &
Movshon, 1999).

Behavioral predictions: swap errors increase
with delay (I) and item competition (II)

Swap errors have been described to increase with delay dura-
tion (Pertzov, Manohar, & Husain, 2017) and decrease with
target to non-target distances (Schneegans & Bays, 2017;
Emrich & Ferber, 2012). We therefore validated our feature-
binding model against these behavioral findings. Firstly, Fig-
ure 5a shows that swap-errors increased with delay duration
in the simulations. In our model, swap errors are induced
by noisy fluctuations. Therefore, demanding longer delays
will increase the probability of a large enough, swap-inducing
noisy fluctuation. Secondly, Figure 5b shows how swap er-
rors decrease with target to non-target distances, congruent
with previous findings (Pertzov et al., 2017). For very close
locations, feedback inhibition is strongest, leading to winner
take all dynamics between nearby bumps, explaining an in-
crease of swap errors for such distances. For intermediate
distances, similarly to (Almeida, Barbosa, & Compte, 2015),
simultaneous bumps interfere (repulsively and through their
phase relationship, which is in this case less stable through
the delay). Experimentally, these two regimes correspond to
different scenarios. In the first case, one color is forgotten,
while on the second scenario, there is an actual swap error.
This prediction could be tested experimentally by probing sub-
ject’s memory on all items, instead of just one (Adam, Vogel,
& Awh, 2017). In sum, our model is able to describe a pre-
viously found dependence of swap errors with delay duration
and with target to non-target distance, and it offers mechanis-
tic explanations for such dependencies.

Neural prediction: swap trials show less phase
preservation through the delay

Finally, abrupt changes in the phase relationship between os-
cillating bumps is the central mechanism of swap errors in our
model (Figures 4a,b). Therefore, it is worth deriving a testable
prediction from this mechanism. Additionally, because these
changes in phase relationships are abrupt, they require ex-
periments using high sampling-rate techniques such as MEG
or EEG, rather than the slower BOLD signal that would smear
out these events. We therefore applied an analysis that has
been proposed to test phase consistency in EEG/MEG: the
phase-preservation index (PPI, (Mazaheri & Jensen, 2006)).
We then calculated the PPI at the end of the delay, relative to
the beginning of the delay, and separately for on-target and
swap trials. As we expected based on our model simulations
(Figure 4), this analysis applied to our simulated field data
showed that trials containing swap errors had a lower PPI,
compared to on-target trials (Figure 6a). To test this prediction
experimentally, we ran n=30 subjects on a multi-item working
memory task. In this task, subjects had to report sequentially
the location of all colored cues as prompted by successive
color probes (Figure 6c). As subjects performed this task,
we recorded MEG signals across the brain. When we com-
pared symmetric swaps (reporting location B for color A AND
reporting location A for color B) to all other trials, we found that
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Figure 5: Swap errors increase with delay duration and de-
crease with target-to-nontarget distances. Model simulations
(top) explain previous behavioral findings (bottom). a) Swap
errors increase with delay duration and b) Simulations where
target and non-target bumps are stored close-by increase
swap errors, relative to when they are further apart.

swap-trials showed significant phase inconsistencies in the al-
pha band (10-13hz), as predicted by the model, and this was
specific of contro-lateral temporal sensors (Figure 6c).

Conclusions
Aiming to account for swap-errors, a prominent source of
multi-item working memory interference, we extended the
classical bump-attractor model. Our biologically-constrained
model offers a plausible mechanism for feature-binding
through selective synchronization. Importantly, it explains
when this feature-binding fails, including how it depends on
delay duration and inter-item distances. Critically, we vali-
dated a strong prediction from its central underlying mech-
anism - phase-locked oscillatory activity during the memory
periods - in humans performing a WM task.
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