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Abstract
The success of deep learning in end-to-end learning on
a wide range of complex tasks is now fuelling the search
for similar deep learning principles in the brain. While
most work has focused on biologically plausible variants
of error-backpropagation, learning in the brain seems to
mostly adhere to a reinforcement learning paradigm, and
while biologically plausible neural reinforcement learn-
ing has been proposed, these studies focused on shal-
low networks learning from compact and abstract sen-
sory representations. Here, we demonstrate how these
learning schemes generalize to deep networks with an
arbitrary number of layers. The resulting reinforce-
ment learning rule is equivalent to a particular form of
error-backpropagation that trains one output unit at any
time. We demonstrate the learning scheme on classi-
cal and hard image-classification benchmarks, namely
MNIST, CIFAR10 and CIFAR100, cast as direct reward
tasks, both for fully connected, convolutional and locally
connected architectures. We show that our learning rule
- Q-AGREL - performs comparably to supervised learning
via error-backpropagation, requiring only 1.5-2.5 times
more epochs, even when classifying 100 different classes
as in CIFAR100. Our results provide new insights into
how deep learning may be implemented in the brain.

Keywords: Reinforcement learning; biologically plausible deep
learning

Introduction
Similarly to deep neural networks, the brain of humans and
animals are composed of many layers between the sensory
neurons that register the stimuli and the motor neurons that
control the muscles. Hence it is tempting to speculate that the
methods for deep learning that work so well for artificial neural
networks also play a role in the brain (Marblestone, Wayne,
& Kording, 2016; Scholte, Losch, Ramakrishnan, de Haan, &
Bohte, 2017). A number of important challenges need to be
solved, however. First of all, the error-backpropagation rule
(i.e. the method typically used to train deep artificial neural
networks) was argued to be neurobiologically unrealistic (Crick,
1989). Researchers have started to address this challenge
by proposing ways in which learning rules that are equiva-
lent to error-backpropagation might be implemented in the

brain (Urbanczik & Senn, 2014; Schiess, Urbanczik, & Senn,
2016; Brosch, Neumann, & Roelfsema, 2015; Richards & Lilli-
crap, 2019; Scellier & Bengio, 2019; Amit, 2018; Sacramento,
Costa, Bengio, & Senn, 2018), most of which were reviewed
in (Marblestone et al., 2016). One of the main challenges re-
mained to inform synapses at the lower network levels about
the desired change in their strength, because the influence
of changes in their strength on activity in the output layer is
only indirect and depends on many intermediate synapses. In
addition, most of the algorithms still focus on learning high-rank
representations, while animals learning to select actions by
trial-and-error is intrinsically low-rank.

Here we will focus on a particular type of learning rule known
as AGREL (attention-gated reinforcement learning) and AuG-
MEnT (attention-gated memory tagging) (Roelfsema & Ooyen,
2005; Rombouts, Bohte, & Roelfsema, 2015), which provide
us with a biologically plausible (in particular, low-rank learn-
ing) solution for the lower synapses-update challenge. These
learning rules realized that in a reinforcement learning setting
the synaptic error derivative can be split into two factors: a
reward prediction error (RPE) which is positive if an action
selected by the network is associated with more reward than
expected or if the prospects of receiving reward increase while
it is negative if the outcome of the selected action is disap-
pointing. In the brain, the RPE is signaled by neuromodulatory
systems that project diffusely to many synapses so that they
can inform them about the RPE (Schultz, 2002); the second
factor is an attentional feedback signal that is known to propa-
gate from the motor cortex to earlier processing levels in the
brain (Roelfsema & Holtmaat, 2018; Pooresmaeili, Poort, &
Roelfsema, 2014). When a network chooses an action, this
feedback signal is most pronounced for those neurons and
synapses that can be held responsible for the selection of this
action and hence for the resulting RPE. These two factors
jointly determine synaptic plasticity. As both factors are avail-
able at the synapses undergoing plasticity, it has been argued
that learning schemes such as AGREL and AuGMEnT are in-
deed implemented in the brain (Roelfsema & Holtmaat, 2018).
However, the previous AGREL and AuGMEnT models used
networks with a single hidden layer, and modeled learning in
tasks with only a handful input neurons.

The present work has two goals. The first is to establish the
relation between the biologically realistic learning rules and

875

This work is licensed under the Creative Commons Attribution 3.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/3.0



a) 

FF

FF

FF FF

FF

FF

FB FB

FB FB

FB FB

b) 

FF

FF

FB

FB

enabled plasticity

FF

FF

FB

FB

hindered plasticity

Δw Δw′�= 0=

c) 

Figure 1: Q-AGREL algorithm plasticity gating. a) Example hidden layers of a network; b) when the activity of the feedforward
neuron is above the threshold, the feedback signal is propagated to lower neurons and plasticity is enabled; c) otherwise, the
feedback signal is not propagated to the lower layer and plasticity is hindered.

error-backpropagation for deep networks composed of multiple
layers between the input and output layer in a reinforcement
learning setting. Can the brain, with its many layers between
input and output indeed solve the credit-assignment problem
in a manner that is equivalent to deep learning? The second
goal is to compare trial-and-error learning with biologically
plausible learning rules to learning with error-backpropagation
in more challenging problems. To this aim we investigated
if and how the biologically learning rules cope with different
datasets, namely MNIST, CIFAR10 and CIFAR100, trained as
direct reward reinforcement learning tasks.

Biologically plausible deep reinforcement
learning

We here generalize and extend AGREL to networks with mul-
tiple layers with two modifications of the previous learning
schemes. Firstly, we use rectified linear (ReLU) functions as
activation function of the neurons in the network. This simpli-
fies the learning rule, because the derivative of the ReLU is
equal to zero for negative activation values, and has a constant
positive value for positive activation values. Note however that
this can easily be generalized to other activation functions. Sec-
ondly, we assume that network nodes correspond to cortical
columns with feedforward and feedback subnetworks: in the
present implementation we use a feedforward neuron and a
feedback neuron per node.

Overall, the network learning goes through five phases upon
presentation of an input image: 1) the signal is propagated
through the network by feedforward connections to obtain acti-
vations for the output units where the Q-values are computed;
2) in the output layer one output unit wins in a stochastic, com-
petitive action selection process; 3) the selected output unit
causes (attention-like) feedback to the feedback unit of each
node (note that this feedback network propagates informa-
tion about the selected action, just as in the brain, see e.g.
(Roelfsema & Holtmaat, 2018), and that it does not need to
propagate error signals, which would be biologically implausi-
ble); 4) a RPE δ is globally computed after the outcome of the
action is evident; 5) the strengths of the synapses (both feed-

forward and feedback) are updated. The role of the feedback
units is to gate the plasticity of feedforward connections (as
well as their own plasticity, see Fig. 1). There is neuroscientific
evidence for the gating of plasticity of feedforward connections
by the activity of feedback connections, as was reviewed by
(Roelfsema & Holtmaat, 2018).

In the opposite direction, the feedforward units gate the ac-
tivity of the feedback units. Feedback gating is shaped by the
local derivative of the activation function, which, for a unit with
a ReLU activation function, corresponds to an all-or-nothing
gating signal: for ReLU feedforward units, the associated feed-
back units of a node are only active if the feedforward units are
activated above their threshold, otherwise the feedback units
remain silent and they do not propagate the feedback signal to
lower processing levels. Gating of the activity of feedback units
by the activity of feedforward units is also in accordance with
neurobiological findings: attentional feedback effects on the
firing rate of sensory neurons are pronounced if the neurons
are well driven by a stimulus and much weaker if they are not
(Van Kerkoerle, Self, & Roelfsema, 2017; Roelfsema, 2006;
Treue & Trujillo, 1999).

In general, for deep networks, updates of feedforward
synapses ∆wp,m from p-th neuron in the n-th hidden layer
onto m-th feedforward neuron in the (n+1)-th hidden layer are
computed as:

∆wp,m = αδy(n)p g(n+1)m
f b

y(n+1)
m

, (1)

and it is equal to the update of the corresponding feedback
synapse ∆w′m,p, where the activity of the feedback unit is de-
termined by the feedback signals coming from the (n+2)-th
hidden layer as follows:

f b
y(n+1)

m
= ∑

q
g(n+2)q

v′q,m f b
y(n+2)

q
, (2)

with q indexing the units of the (n+ 2)-th hidden layer. The
update of a synapse is thus expressed as the product of four
factors: the RPE δ, the activity of the presynaptic unit, the
activity of postsynaptic feedforward unit and the activity of
feedback unit of the same postsynaptic node. Notably, all
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Table 1: Results (averaged over 10 different seeds, the mean and standard deviation are indicated; in some cases - indicated with
”*” - only 9 out of 10 seeds converged).

Rule 1st layer Hidden units α Epochs [#] Accuracy [%]

M
N

IS
T

Q-AGREL Full 1500-1000-500 5e-01 130 (54) 98.33 (0.09)
Error-BP Full 1500-1000-500 1e-01 92 (11) 98.32 (0.04)
Q-AGREL Conv 21632-5408-500 1e+00 44 (10) 99.17 (0.05)
Error-BP Conv 21632-5408-500 1e-02 26 (12) 99.19 (0.10)
Q-AGREL LocCon 21632-5408-500 1e+00 83 (13) 99.04 (0.14)
Error-BP LocCon 21632-5408-500 1e-02 31 (10) 98.82 (0.20)

C
IF

A
R

10

Q-AGREL Conv 28800-7200-1000-500 1e+00 115 (23) 73.54 (1.35)
Error-BP Conv 28800-7200-1000-500 1e-03 83 (21) 71.25 (1.08)
Q-AGREL LocCon 28800-7200-1000-500 1e+00 173 (36) 64.37 (2.41)
Error-BP LocCon 28800-7200-1000-500 1e-03 145 (16) 64.65 (1.16)

C
IF

A
R

10
0 Q-AGREL Conv 28800-7200-1000-500 1e+00 230 (30) 34.90 (1.49)*

Error-BP Conv 28800-7200-1000-500 1e-03 104 (24) 36.79 (1.78)
Q-AGREL LocCon 28800-7200-1000-500 1e+00 343 (68) 29.39 (2.38)
Error-BP LocCon 28800-7200-1000-500 1e-03 156 (13) 32.73 (0.78)

the information necessary for the synaptic update is available
locally, at the synapse. Moreover, simple inspection shows that
the identical update for both feedforward and corresponding
feedback synapses can be computed locally.

Experiments

We tested the performance of Q-AGREL on the MNIST, CI-
FAR10 and CIFAR100 datasets. The MNIST dataset consists
of 60,000 training samples (images of 28 by 28 pixels), while
the CIFAR datasets comprise 50,000 training samples (images
of 32 by 32 by 3 pixels), of which 1,000 were randomly chosen
for validation at the beginning of each experiment. We use
a batch gradient to speed up the learning process (but the
learning scheme also works with learning after each trial): 100
samples were given as an input, the gradients were calculated,
divided by the batch size, and then the weights were updated,
for each batch until the whole training dataset was processed
(i.e. for 590 or 490 batches in total), indicating the end of an
epoch. At the end of each epoch, a validation accuracy was
calculated on the validation dataset. An early stopping criterion
was implemented: if for 20 consecutive times the validation
accuracy had not increased, learning was stopped.

We ran the same experiments with Q-AGREL and with error-
backpropagation for neural networks with three and four hidden
layers. The first layer could be either convolutional or locally
connected, the second layer was convolutional but with a stride
of 2 in both dimensions, to which a dropout of 0.8 (i.e. 80% of
the neurons in the layer were silent) was applied, then either
only one fully connected layer or two followed (with the last
layer having a dropout rate of 0.3). At the level of the output
layer (which had 10 neurons for MNIST and CIFAR10, while it
was 10 times bigger for CIFAR100) for error-backpropagation
a softmax was applied and a cross-entropy error function was
calculated. We decided to test networks with locally connected
layers because such an architecture could represent the bio-
logically plausible implementation of convolutional layers in the
brain (since shared weights are not plausible). Moreover, the

convolutional layers with stride 2 were used instead of max
pooling layers (which are not biologically plausible) to reduce
the dimensionality of the layer following the convolutions, as
described in (Springenberg, Dosovitskiy, Brox, & Riedmiller,
2014). As argued by Hinton (Hinton et al., 2016), dropout is
biologically plausible as well: by removing random hidden units
in each training run, it simulates the regularisation process
carried out in the brain by noisy neurons.

In summary, we ran experiments with the architectures:
conv32 3x3 or loccon32 3x3; conv32 3x3 stride2;
drop.8; (full1,000;) full500; drop.3, with 10 differ-
ent seeds for synaptic weight initialization. All weights were
randomly initialized within the range [−0.02,0.02] and the feed-
back synapses were identical to the feedforward synapses
(strict reciprocity). For MNIST only we also performed a few ex-
periments with fully connected networks, of which the weights
were initialized in [−0.05,0.05].

Results
Table 1 presents the results of simulations with the different
learning rules. We trained networks with only three hidden
layers and networks with an extra hidden layer with 1000 units.
We used 10 seeds for each network architecture and report
the results as mean (standard deviation). Our first result is
that Q-AGREL reaches a relatively high classification accuracy
of 99.17% on the MNIST task, obtaining essentially the same
performance as standard error-backpropagation both with the
architectures with convolutions and straightforward fully con-
nected networks. The convergence rate of Q-AGREL was a
factor of 1.5 to 2 slower than that of error-backpropagation for
networks with convolutional layers, while it was a factor of 2.5
slower in networks for locally connected layers, but performing
slightly better than error-backpropagation.

The results obtained from networks trained on the CIFAR10
dataset show that networks trained with Q-AGREL reached the
same accuracy (if not higher) than with error-backpropagation.
Additionally, the number of epochs required for the networks to
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meet the convergence criterion was also comparable.
Table 1 also shows the results obtained from networks

trained on CIFAR100. The final accuracy obtained with Q-
AGREL was somewhat lower than with error-backpropagation.
However, we still see that Q-AGREL is able to learn the CI-
FAR100 classification task with a convergence rate only 2 to
2.5 times slower than error-backpropagation and the rate for
CIFAR10. These results shows that such trial-and-error learn-
ing rule can scale up to a 10 times higher number of classes
with a penalty relatively small.

Discussion
We implemented a deep, biologically plausible reinforcement
learning scheme called Q-AGREL and found that it was able to
train networks to perform the MNIST, CIFAR10 and CIFAR100
tasks as direct reward problems with performance that was
nearly identical to error-backpropagation. We also found that
the trial-and-error nature of learning to classify with reinforce-
ment learning incurred a very limited cost of 1-2.5x more train-
ing epochs to achieve the stopping criterion, even for classifying
objects in 100 classes.

The results were obtained with relatively simple network
architectures (i.e. not very deep) and learning rules (no op-
timizers or data augmentation methods were used). These
additions would almost certainly further increase the final ac-
curacy of the Q-AGREL learning scheme.

The present results demonstrate how deep learning can
be implemented in a biologically plausible fashion in deeper
networks and for tasks of higher complexity by using the com-
bination of a global RPE and ”attentional” feedback from the
response selection stage to influence synaptic plasticity. Im-
portantly, both factors are available locally, at many, if not all,
relevant synapses in the brain (Roelfsema & Holtmaat, 2018).
We demonstrated that Q-AGREL is equivalent to a version
of error-backpropagation that only updates the value of the
selected action. Q-AGREL was developed for feedforward net-
works and for classification tasks where feedback about the
response is given immediately after the action is selected.

We find it encouraging that insights into the rules that govern
plasticity in the brain are compatible with some of the more
powerful methods for deep learning in artificial neural networks.
These results hold promise for a genuine understanding of
learning in the brain, with its many processing stages between
sensory neurons and the motor neurons that ultimately control
behavior.
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