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Abstract

Texforms are images that preserve the coarse shape and
texture information of objects, while rendering them un-
recognizable at the basic level (Long, Konkle, Cohen, &
Alvarez, 2016). These stimuli have been valuable to test
whether cognitive and neural processes depend on ex-
plicit recognition of the objects. However, to generate
these images, the current implementation and compu-
tational complexity of the model requires approximately
4-6 hours per object – thus preventing data-hungry ex-
periments that may require generating thousands of tex-
forms. Our contribution in this work includes the intro-
duction of 2 new texform generation methods that ac-
celerate the rendering time from hours to minutes or
seconds respectively. The first we call Fast-FS-Texform
where we accelerate the rendering time of the Freeman
and Simoncelli (2011) model and increase the output res-
olution by placing a simulated point of fixation outside of
the visual field. The second, which we call NeuroFovea-
Texform, is an adaptation of the newly proposed metamer
model of Deza, Jonnalagadda, and Eckstein (2019) which
leverages a VGGNet and foveated style transfer. We show
qualitative and quantitative results of both new methods
opening the door to data-intensive texform experiments.

Keywords: texforms, object representation, visual percep-
tion

Introduction

The human visual system transforms retinal input into high-
level representations of the physical world. To do so, early
processing stages detect low-level feature information such as
edges, extending into mid-level features that are more object-
centered such as textures and form information, and ultimately
give rise to high-level object categorization (DiCarlo & Cox,
2007; Mishkin, Ungerleider, & Macko, 1983).

A major challenge in visual cognitive neuroscience is to
understand the interface between mid-level representational
stages–which are more perceptual, and high-level recognition
processes–which are more semantic in nature. However, dis-
sociating these levels of representation has been challeng-
ing when using pictures of recognizable real-world objects
as stimuli. Recently, a new stimulus class called ‘texforms’
was developed in order to separate high-level recognition pro-
cesses from mid-level shape and texture processes (Long et
al., 2016; Long, Störmer, & Alvarez, 2017; Long, Yu, & Konkle,
2018).

Specifically, texforms are images that preserve the coarse
shape and texture information, while rendering them unrecog-
nizable at the basic-level. Using texform stimuli, Long et al.
(2016) showed that there are mid-level perceptual differences
between big and small inanimate objects – a distinction which
had often been thought as being purely ’semantic’ because
of the variety in each class of objects (see also Long et al.,
2017). Further, these mid-level feature differences preserved
in texforms are sufficient to drive the large-scale organization
of neural responses by animacy and object size in visual cor-
tex, highlighting an extensive role for mid-level feature compu-
tations in ventral stream organization and broadly in the visual
system (Long et al., 2018). Most recently, this stimulus class
is proving to be a useful image manipulation to probe the ne-
cessity of semantic processing across a wide variety of visual
tasks (e.g. long term memory: Lam, Schurgin, & Brady, 2019,
curvature processing: Magri, Long, Chiou, & Konkle, 2019,
visual curiosity and exploration: Gottlieb & Oudeyer, 2018).

However, there are two main limitations to using texforms
in future experiments: rendering time and image resolution.
To create these stimuli, Long et al. (2016) used the scene
metamer model of Freeman and Simoncelli (2011) which co-
erces noise to have the same intermediate-level image texture
statistics as the input image, given a point of fixation. The ren-
dering process is iterative in nature and takes about 4-6 hours
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Figure 1: The collection of current and proposed texform
rendering models. Left: The original FS-Texform rendering
pipeline. Center: Fast rendering variant with the fixation point
is outside the frame of the image. Right: Alternative tex-
form method using foveated style transfer for visual scene
metamers.

per image to synthesize one texform. Further, to make a tex-
form of an object with this model, the target object is placed on
a gray background in the visual periphery of the model, lever-
aging image summary statistics in relatively coarse pooling
regions. As a consequence of placing the object away from
center fixation, the resolution of the resulting synthesized tex-
form is relatively low (200×200 px; see Figure 1).

In this paper, we introduce and compare two alternative
methods for generating texform images. The first method uses
the same algorithm as Long et al. (2016), but more efficiently
leverages peripheral pooling windows to make both faster and
higher resolution images, by simulating a point of fixation out-
side of the rendering window. The second uses a different
algorithm developed by Deza et al. (2019) for visual scene
metamerism that capitalizes the representations of a VGG19-
Net (Simonyan & Zisserman, 2014) and feed-forward style
transfer (Huang & Belongie, 2017; Gatys, Ecker, & Bethge,
2016) to rapidly generate texform-like stimuli. These two ap-
proaches also enable different ways of parameterizing the tex-
form rendering process. Our overall goal is to make these
faster methods publicly available to speed research that in-
vestigates mid-level feature processing of objects.

Methods
Algorithm 1: Fast-FS-TexForm. The original texform model
by Long et al., 2016 places an object in the visual periphery
and renders a texform through the metamer model of Freeman
and Simoncelli (2011). During this procedure, an image is
synthesized from noise in order to match the texture statis-
tics of the object in the periphery for every overlapping recep-
tive field in addition to roughly matching the structure given a
low-pass residual of the input image. Given the parameters
selected by Long et al. (2016), there are roughly 1−4 recep-

tive fields that partially overlap with the input object of size
200× 200 px in a 640× 640 px window frame (see Figure
1). Henceforth, we will refer to this original method for creat-
ing texforms as FS-texform method, named after the Freeman
and Simoncelli synthesis method.

The accelerated texform model operates with the same ren-
dering pipeline of Freeman and Simoncelli (2011) and param-
eter settings of Long et al. (2016), but critically places a sim-
ulated point of fixation outside of the image, at an equivalent
eccentricity of the previous settings. This has two major con-
sequences. First, this method enables the construction of a
higher-resolution texform, preserving the resolution of the in-
put image at 640×640. Additionally, the computational com-
plexity of the model is reduced in an order of about ×25 to
×100, given that original algorithm contained many pooling
regions that had to be synthesized slowly even though they
only covered the uniform gray background and were ultimately
cropped.

Algorithm 2: NeuroFovea-Texform:

Recently Deza et al. (2019) developed a fast way to gen-
erate visual scene metamers by capitalizing on Peripheral
Representations (Deza & Eckstein, 2016) and localized Style
Transfer (Gatys, Ecker, Bethge, Hertzmann, & Shechtman,
2017) creating the notion of Foveated Style Transfer. The idea
behind their model is to gently perturb the original image in
the direction of its texture representation, for each receptive
field in the field of view of a simulated human observer. Each
receptive field of the input image is encoded with a spatially
masked relu4 1 (the rectified 4th convolutional block) activa-
tion of a VGG19, and they are each ‘texturized’ by applying
Adaptive Instance Normalization (AdaIN) (Huang & Belongie,
2017) on noise and transferring the style of the receptive field
content onto the noise. They then find the maximum perturba-
tion coefficients (α) in an image given the size of each recep-
tive field. The main difference with the model of Freeman and
Simoncelli (2011) is that rather than coerce noise to match the
same local texture statistics of each receptive field, Deza et al.
(2019) use noise to perturb the image into the direction of its
intrinsic texture representation for each receptive field, allow-
ing a purely feed-forward and stochastic metamer generating
pipeline.

Given the hyperparametric nature of the Deza et al. (2019)
model, we decided to simplify it’s computation and restrict the
perturbation coefficients (γs(◦) = α0) to a single value. We
made this simplification given that the image stimuli is not
a scene (and rather a small object in the gray background),
and we are computing distortions over a small amount of
pooling regions. We thus performed a perceptual optimiza-
tion procedure (Deza et al., 2019) over 240 images with MS-
SSIM (Wang, Simoncelli, & Bovik, 2003) and found that the
optimal coefficient that matched the distortions of the texforms
was α0 = 0.80, for a scaling factor of s = 0.25 and pooling
window aspect ratio of 2.0. We did not use a refinement mod-
ule in this paper, however our final outputs are normalized via
contrast adjustment with respect to the input image.
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Figure 2: A collection of texform samples for the FS-Texform (Left) originally rendered at 200×200 px, and the two new proposed
models (Middle: Fast-FS-Texform, Right: NeuroFovea-texform) rendered at high resolution 640×640 px. The true labels are as
follows: Top Left: Binoculars, Top Right: Upright Piano, Bottom Left: Lady Bug, Bottom Right: Gorilla.

Results

General Model Comparison: Figure 1 shows a schematic
comparing the original model with these two alternatives. In
the figure all models render a texform stimuli from a hoofed
gemsbok (an animal). The Fast-FS-Texform model notice-
ably renders the image an order of magnitude faster than the
original Texform model, and in addition can render a higher-
resolution object stimuli at 640 × 640 px that can later be
down-sampled if necessary. In addition, the distortion type is
identical of the Long et al. (2016) texforms as the same texture
statistics of Portilla and Simoncelli (2000) are used to com-
pute local texture statistics, although a structural constraint is
added in the Freeman and Simoncelli (2011) to roughly pre-
serve the object shape (Wallis, Bethge, & Wichmann, 2016).

The model of Deza et al. (2019) creates a different flavor
of texforms, given that the model perturbs the object in the di-
rection of its texture-like representation vs performing texture-
matching. Further, this method a achieves an even faster ren-
dering speed.

Figure 2 shows texform exemplars across object size
and animacy dimensions, rendered across all models
(FS-Texforms, Fast-FS-Texforms and NeuroFovea-Texforms),
where only the later two are able to receive input from high-
resolution images. Notice that all models roughly preserve
global shape, while distorting the image locally via their re-
spective texture model.

Quantitative Assessment: It is clear that the two meth-
ods preserve texture and coarse form in different ways. Is the
NeuroFovea method creating more distorted texforms than the
Fast-FS-Texform algorithm? To examine this, we computed
the image-level similarity metric as a proxy for a human ob-
server between the texform and original recognizable image
for a collection of N = 180 input images I( j) using MS-SSIM
scores between the original images and their outputs. MS-
SSIM computes a multi-resolution perceptual similarity score
that takes into account factors such as contrast, luminance

and structure – giving an intuition of how a model observer
would perceive equal distortions that are different in flavor for
both the Fast-FS-Texforms TF and NeuroFovea-Texforms TN .
Thus we compute:

E(∆-MS-SSIM)2 =
1
N

N

∑
j=1

(MS-SSIM(T ( j)
F , I( j))−

MS-SSIM(T ( j)
N (γs), I( j)))2

(1)

We find that E(∆-MS-SSIM)2 is 0.03 ± 0.03, which indi-
cates similar perceptual losses across both families of tex-
forms with respect to their references despite their difference
in texture distortions. Thus, this analysis suggests that these
two methods of generating texforms equally preserve basic-
low level features, and call for future work that examines both
how exactly they differ in mid-level features (e.g., specific
kinds of texture/shape properties)

Discussion
Here we developed two methods for generating texforms that
address the key limitations of the original method. Specifically,
we introduced a minor modification to the original method to
generate higher resolution texforms at a significant fraction of
a speed: 15 minutes per texform. Additionally, we adapted
the newly proposed metamer model of Deza et al. (2019) for a
deep-net like texform that is rendered at 1 second per texform
independent of stimuli size.

It is worth noting that this is only the first stage of generating
texforms; critically, the next step following any of these ren-
dering methods is to perform a behavioural recognition task
to exclude any model outputs that remain recognizable as
performed in Long et al. (2016, 2017). In our experience,
there are some target stimuli that even under heavy distor-
tions are still recognizable at the basic-level such as zebras
and giraffes, potentially due to their unique textures.
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To our knowledge this is the first effort that leverages
other metamer models to accelerate texform rendering. In-
deed, recent metamer models such as the CNN-Synthesis
model (Wallis et al., 2019), and the SideEye model (Fridman
et al., 2017) may also potentially be able to render a different
flavor of texforms. In parallel, we have also found that the work
of Roberts, Kingstone, and Todd (2019) has also tried similar
strategies with the Freeman and Simoncelli (2011) model to
accelerate texform rendering as they too have highlighted the
problem of the computational intractability given the current
state of the art.

Finally, future work with these texform rendering algorithms
will explore the ways in which texform generation can be pa-
rameterized and varied. For example, in the Fast-FS-Texform
algorithm, we can vary the degree of visual eccentricity, pool-
ing region aspect ratio, point of fixation, and receptive field
rate of growth (scale). In the NeuroFovea method, we can
also vary the previous parameters in addition to the deepnet
layer over which we perform style transfer, potentially allow-
ing for texforms that contain more or less recognizable shape
parts and texture variations. By creating different variants of
texforms, we can start to probe the degree to which different
kinds of mid-level visual features are necessary for seman-
tic processing. More broadly, these new methods that quickly
generate different variants of texforms will permit us to test
more specific hypothesis about how meaning is ultimately de-
rived from the statistics of the visual input.
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