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Abstract
In visual cortex of human and non-human primates, high-
level visual areas near intraparietal sulcus have been
shown to explicitly encode the number of objects in vi-
sual displays. To date, evidence for this numerosity
code has come from experiments that use simple dot-
like visual stimuli, raising the question of whether the
numerosity code persists during perception of natural
scenes. Here, we assessed evidence for a numerosity
code in high-resolution fMRI measurements of responses
to thousands of natural scenes in 3 human subjects. We
constructed an encoding model that predicted voxelwise
responses as a function of local object counts in each
natural scene. Our model was able to accurately predict
voxelwise activity in visual cortex. To test if local object
counts were acting as a proxy for simple low-level im-
age features, we constructed voxelwise encoding models
based on Gabor wavelet filtering of the natural scenes.
For voxels in anterior visual cortex, the numerosity en-
coding model generated more accurate predictions than
the Gabor model. These results offer preliminary evi-
dence for a numerosity code in anterior visual cortex dur-
ing natural scene stimulation.
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Introduction
Humans and non-human primates are able to quickly esti-
mate the number of objects in visual space. Previous stud-
ies have suggested that this ability is linked to maps in pari-
etal cortex that are tuned to the number of objects in simple
dot-like displays (Harvey, Klein, Petridou, & Dumoulin, 2013;
Nieder & Miller, 2004; Piazza, Izard, Pinel, Le Bihan, & De-
haene, 2004; Tudusciuc & Nieder, 2007). However, in the
natural world we are rarely presented with cleanly segmented

and separated objects. In contrast, natural scenes contain
many different objects with varied shapes, sizes, occlusion,
etc. It is not known if the numerosity representation found in
previous studies persists when viewing complex natural stim-
uli. In this paper we developed a numerosity-based voxelwise
encoding model to explore the representation of numerosity
in the human brain in response to natural scene stimulation.
We present preliminary evidence for a numerosity represen-
tation that appears to be distinct from low-level, wavelet-like
features, but is subsumed by more complex feature represen-
tation in a performance-optimized deep neural network.

Figure 1: Experiment. fMRI BOLD responses were recorded
in response to thousands of natural scene images. Model.
The Numerosity Encoding Model was constructed by calcul-
cating local object counts for every natural scene image. Ob-
ject counts were transformed into one-hot maps for numerals
1-9 and 10+.
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Methods

Data

High-resolution whole-brain fMRI BOLD measurements were
obtained from human subjects in response to natural scene
images (Figure 1 top). Each subject was presented with 9,000
unique images and 1,000 images shared among all subjects,
totalling 10,000 images each. Each image was shown 3 times,
non-sequentially, for a total of 30,000 stimulus trials presented
over 40 separate runs. Images are displayed for 3 seconds
followed by a 1 second interstimulus interval. Subjects were
instructed to focus on a center fixation dot and respond with a
button press to indicate if the image is new or repeated. Data
from N=3 subjects are presented in this paper. Further data
collection is ongoing.

Encoding Models

Three independent encoding models were fit to voxel re-
sponses. All models were trained using a feature-weighted
receptive field (fwRF) ridge regression method, previously de-
veloped by our lab (St-Yves & Naselaris, 2018). Briefly the
fwRF is a voxel-wise encoding model that estimates receptive
field location and size from stimulus generated feature-maps.
The fwRF generates predictions of brain activity in response
to a visual stimulus based upon feature weights and a feature
pooling field. The feature pooling field indicates the region
in visual space a voxel’s activity is most driven by. The same
feature maps are used across voxels, however the weights as-
signed to each feature will vary and indicate features encoded
in the activity of each voxel. Values for the location and ra-
dius of the feature-pooling field, i.e. the fwRF center and size,
as well as the feature weights were estimated using ridge re-
gression. Three distinct sets of feature maps were used to
generate three models of brain activity.

Numerosity Encoding Model To test for numerosity coding
we constructed an encoding model that predicted voxel-wise
responses as a function of local object counts in each image
(Figure 1 bottom). Feature maps for this model were created
based on panoptic scene segmentations of publically available
images from the COCO dataset (Lin et al., 2014). Segmenta-
tion images were cropped and down-sampled to 128x128 pix-
els. Object counts for each pixel were assigned based upon
how many unique segmentations appear in a window around
that pixel. 8 window sizes were used, 16x16 to 128x128 in
steps of 16. One-hot maps were then created for numerals 1-9
and 10+, giving 80 feature maps. One-hot maps are simply an
indication of whether the window around that pixel contained
the number of objects specific to that map. For instance, if a
16x16 window around a pixel contained 3 unique objects, that
pixel would have a 1 in the feature map for numeral 3 and a 0
in all other one-hot maps for that window size.

Alternate Encoding Model For comparison we constructed
two alternate encoding models based on Gabor-wavelet fea-
ture maps (St-Yves & Naselaris, 2018), and feature maps ex-
tracted from a deep neural network (Krizhevsky, Sutskever, &

Hinton, 2012), respectively.

Prediction accuracy and cross-validation

All encoding models were trained on ∼80% of responses from
each subject. Approximately 20% of the training set was held-
out for optimization of ridge hyper-parameter as well as selec-
tion of fwRF location and sizes. The remaining ∼20% were
used for cross-validation. Prediction accuracy is the Pearson
correlation between model predictions and measured voxel re-
sponses.

Figure 2: Prediction Accuracy Model Comparison. The joint
distribution of prediction accuracy (Pearson correlation be-
tween predicted and measured brain activity from 3 subjects
for Gabor wavelet-based encoding model (x-axis) and Nu-
merosity based encoding model (y-axis). Voxels are binned
into hexagons and colored by the average coronal slice loca-
tion for all voxels in that bin. An example axial slice on the
left shows approximate slice demarcations for each color cat-
egory (surface reconstructions and ROIs are not yet available
for this preliminary dataset). The Gabor-wavelet encoding
model makes more accurate predictions than the Numeros-
ity model in posterior sections of the brain, especially early
visual areas. In anterior visual (slice locations 20-30, which
includes parietal visual areas) areas the Numerosity encoding
model makes more accurate predictions.

Results
In natural scenes numerosity is likely to be correlated with,
but not entirely determined by, simple low-level attributes (e.g.
contrast, power variation across spatial frequency bands) of
images. To determine where or if the encoding of numerosity
and low-level features is disentangled in visual cortex we com-
pared the prediction accuracy of the Numerosity and Gabor-
wavelet encoding models. For many voxels in anterior visual
cortex the Numerosity encoding model was the more accu-
rate predictor of brain activity (Figure 2). This result suggests
that anterior visual cortex maintains a representation of the
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local number of objects in natural scenes, and that this repre-
sentation cannot be entirely accounted for by simple low-level
image attributes.

A recent study (DeWind, 2019) suggests that numerosity
representations can arise “spontaneously” in feature maps of
deep convolutional neural networks (DCNN) trained to cate-
gorize objects (Krizhevsky et al., 2012). This result suggests
that the Numerosity encoding model should exhibit no advan-
tage in prediction accuracy over an encoding model based on
the feature maps of an optimized DCNN. Indeed, the DCNN-
based encoding model outperforms the Numerosity encoding
model for all voxels (Figure 3). This result clearly demon-
strates that a representation of the local number of objects in
natural scenes is only a subset of the representations main-
tained in all visual areas.

Figure 3: Prediction Accuracy Model Comparison. The joint
distribution of prediction accuracy (Pearson correlation be-
tween predicted and measured brain activity) for Deep Con-
volutional Neural Network(DCNN)-based encoding model (x-
axis) and Numerosity based encoding model (y-axis). As in
Figure 2, voxels are binned into hexagons and colored by av-
erage coronal slice location. The numerosity model is com-
pletely subsumed by the DCNN model, regardless of slice lo-
cation, suggesting numerosity may be a feature generated by
DCNNs. Data from Subject 1 only.

Conclusion
Our results offer evidence for a representation of numeros-
ity in the human visual cortex during natural scene viewing.
This representation appears to be distinct from low-level vi-
sual features and maintained primarily in anterior parts of the
visual system, in line with previous studies in humans and
non-human primates (Harvey et al., 2013; Nieder & Miller,
2004; Piazza et al., 2004; Tudusciuc & Nieder, 2007). Like

many other potentially useful and behaviorally relevant rep-
resentations, the particular representation of numerosity built
into our encoding model appears to be subsumed by the fea-
tures encoded in a performance optimized DCNN. How or if
the numerosity representation studied here is utilized to guide
behavior or cognition will be an interesting topic for future ex-
ploration.
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