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Abstract: 

In a standard experimental paradigm typically used in 
cognitive neuroscience, time is discretized into distinct 
events and the presented stimulus material is sampled 
from a low number of categories. While this approach 
allows conducting highly controlled experiments, its 
ecological validity is limited, as in real life the human 
brain has to operate on a continuous time scale and 
also has to process complex stimuli that typically 
cannot be assigned to a low-dimensional stimulus 
space. The encoding model approach has been 
introduced to address these issues by using high-
dimensional sets of stimulus features as a means to 
analyze neuroimaging data from complex and time-
continuous tasks. Recently, activations from deep 
neural networks (DNNs) were proposed to serve as 
features in the encoding model approach.  However, it 
has been argued that such DNN-based features might 
be uninformative for human neuroimaging data, as the 
behavior of a trained DNN does not necessarily have to 
resemble human behavior on a given task. Here, we 
present preliminary evidence (N = 1) that DNN 
activations from the top network layer can predict 
human behavior with high fidelity in three different Atari 
2600 arcade games based on a linear model. These 
findings clear the way for extending this type of 
analysis to neuroimaging data, testing whether DNN 
activations extracted from hidden layers explain 
variance in the fMRI signal of task-related brain regions.  

Keywords: encoding models; deep neural networks; 
arcade games; Atari; neuroimaging; FMRI 

Introduction 

To isolate the neural correlates of specific cognitive 
processes, the factorial experimental design has been 
established as the workhorse in cognitive 
neuroimaging (Friston et al., 1995). The factorial 
design approach assumes that the presented stimulus 
material is carefully selected such that stimulus 
dimensions of no interest are balanced across pre-

defined experimental conditions, and the stimuli are 
typically presented in a sequence of discrete temporal 
events (trials), with balanced ordering across 
experimental conditions. While this highly controlled 
experimental approach has provided many interesting 
insights into the neurofunctional architecture of the 
human brain, we argue that the ecological validity of 
this approach is limited, as in real life the human brain 
has to operate on a continuous time scale and process 
stimuli sampled from dynamic environments without an 
underlying low-dimensional categorial structure. 

To model the neural activation underlying human 
behavior in complex, time-continuous tasks, we have 
to depart from factorial designs and look for alternative 
analysis approaches. One such approach, the 
encoding model approach, has been initially employed 
to characterize neural activation patterns underlying 
visual processing of complex, naturalistic stimuli (Kay 
et al., 2008). In the Kay et al. study, stimuli were not 
sampled from a low number of different categories, but 
instead each stimulus was represented by a high-
dimensional feature vector, and these features were 
used as predictors in a linear model. Using the 
encoding model approach, Kay et al. showed that it is 
possible to predict the presented stimuli with high 
accuracy based on fMRI activation patterns in early 
visual cortex. Subsequently, it was shown that the 
encoding model approach also works in the time-
continuous domain by decoding short video clips from 
activation patterns in early visual cortex (Nishimoto et 
al., 2011). The encoding model approach has also 
been used in tasks not requiring visual processing, for 
example to characterize the semantic representations 
of words by predicting neural activations associated 
with story listening (Huth et al., 2016).  

In the aforementioned studies, the features used for 
prediction in the encoding models were carefully 
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chosen for the given task, for example Gabor wavelets 
for visual processing or a basic dictionary for semantic 
encoding. Interestingly, it was recently shown that 
manually designed features can be replaced by 
activations from deep neural networks (DNNs) both in 
the visual and auditory domain (Güclü and van 
Gerven, 2015; Cichy et al., 2016; Kell et al., 2018). 
The DNN-informed version of the encoding model 
approach assumes that a DNN architecture exists that 
can be trained to perform the given experimental task 
at least at human level performance. The stimulus 
material presented to the subjects is also processed 
through the trained DNN, and the resulting activations 
are used as features in the encoding model in order to 
predict fMRI time series or activation patterns (van 
Gerven, 2017). Thus, the DNN-informed encoding 
model approach can be seen as a specific realization 
of the general idea of employing DNNs for 
computational modeling in cognitive neuroimaging, as 
recently proposed by several authors (Naselaris et al., 
2018; Kriegeskorte and Douglas, 2018; Cichy and 
Kaiser, 2019).  

Over the last couple of years, research on deep 
learning has been extended from visual and auditory 
processing to more complex task requiring dynamically 
generated motor responses, for example in arcade 
games or spatial navigation tasks (Mnih et al., 2015; 
Jaderberg et al., 2018; Banino et al., 2018). While it is 
straightforward to implement the DNN-informed 
encoding model approach for such more complex 
tasks from a technical perspective, interesting novel 
questions arise in this context, as there are no 
guarantees that task-performing DNNs match with 
humans at the behavioral level, i.e. motor responses 
generated by the DNNs might substantially deviate 
from human-generated responses. As a consequence, 
features extracted from hidden layers might be 
uninformative for neuroimaging data.  

Here we test to which extent activations extracted from 
the top layer of DNNs trained to perform different 
arcade games can be used to predict human behavior 
on the respective games. As the employed DNNs 
generated Q-values as outcomes at the top layer, we 
equivalently test whether the response distributions 
generated by the DNNs can be used to predict human 
responses. We present preliminary evidence that the 
DNN-informed encoding model approach can be used 
to predict human motor responses with high accuracy 
in each of the three tested arcade games.  

 

 

 

Methods 

Sample We present data from one subject (author 
H.M.).  

Tasks Three Atari 2600 games were chosen to cover 
different types of arcade games, see Figure 1. Before 
starting to play, the subject read the manuals of the 
three games. After approximately one hour of training 
in each of the games, videos were recorded while the 
subject performed 5 blocks of 5 min length of each 
game. The games were performed on a desktop 
computer using a standard keyboard. Games were 
presented via the Atari Learning Environment (ALE, 
Bellemare et al., 2013) using a modified Python script 
originally written by Ben Goodrich (ALE Python 
interface). Left, right, bottom, up responses were given 
via the respective arrow keys (right hand) and the fire 
response via the ‘z’ button (left hand). The game 
screen was presented at a resolution of 1280 x 840 
pixels (width x height), and game states were updated 
at a frequency of 60 hz.   

 

 

Figure 1: The three Atari 2600 arcade games used as 
experimental tasks. In Breakout, the player controls a 
paddle at the bottom of the screen, steering a ball 
towards the wall at the top of the screen in order to 
remove bricks from the wall. In Enduro, the player 
steers a car along a race track. In Space Invaders, the 
player controls a spacecraft and fights against yellow 
aliens.  

Deep neural networks The architecture of the 
employed DNNs was the same as described in the 
original Atari DQN paper (Mnih et al., 2015), with 3 
convolutional steps and 2 fully connected processing 
steps from layer 1 to layer 6. Trained versions of the 
Enduro and Space Invaders networks were 
downloaded from the GitHub repository of Parisotto et 
al., 2016, while the Breakout DNN was trained on 40 
million frames on a Nvidia Quadro P2000 graphics 
card using the same training procedure (RMSprop) 
and parameters as in Mnih et al., 2015. After training 
via reinforcement learning on the respective tasks, the 
DNNs’ weights were fixed, i.e. no steps were taken to 
adapt the DNNs’ behavior to human behavior during 
training.  

Data processing Before being submitted to the 
DNNs, the recorded videos were downsampled to 15 
hz by taking the maximum over every 3rd and 4th 
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frame, as in Mnih et al., 2015. Moreover, the screen 
resolution was downsampled to 84 x 84 pixels and 
RGB colors were converted to grayscale as in Mnih et 
al., 2015. One gaming block of 5 min corresponded to 
4,500 processing steps for the network. The networks’ 
top layer activation values (i.e. Q-values) were 
transformed into response probabilities via the softmax 
function using a temperature of 𝜏 = 1: 

𝑝𝑖 =
exp (

𝑞𝑖
𝜏
)

∑ exp (
𝑞𝑘
𝜏
)𝑘

 

For Breakout, the 4 response options were no action, 
fire, left, right. For Enduro, the 9 response options 
were no action, fire, right, left, down, down-right, down-
left, right-fire, left-fire. For Space Invaders, the 6 
response options were no action, fire, right, left, right-
fire, left-fire. The probabilities of the responses were 
upsampled to 18,000 frames per block by repeating 
each probability vector four times, as the human 
responses were recorded at 60 hz. For Breakout, 
human responses were binary coded for no action, 
fire, right and left. For Enduro, human responses were 
binary coded for no action, fire (also including right-fire 
and left-fire), right (also including right-fire, down-right), 
left (also including left-fire, down-left), and down (also 
including down-right, down-left). For Space Invaders, 
human responses were binary coded for no action, fire 
(also including right-fire and left-fire), right (also 
including right-fire), and left (also including left-fire).  

As the presented pilot study was conducted to 
evaluate the DNN-informed encoding model approach 
from a behavioral perspective for future fMRI studies, 
both the human responses and the response 
probabilities generated by the DNNs were convolved 
with a Gaussian kernel of FWHM = 5.3 s, 
corresponding to the FWHM of the standard 
hemodynamic response function (HRF) in the SPM 
software package. The convolution step was 
implemented to remove information in the high 
frequency domain, as this information can also be 
expected to be absent in the BOLD signal in future 
fMRI studies. The lengths of the time series were 
reduced to 17,100 frames per block by the convolution 
step.  

Encoding model and cross-validation The encoding 
model was a standard linear regression model with a 
convolved binary human response vector as outcome 
variable and convolved DNN-generated response 
probability variables as predictors. The model was 
fitted via ordinary least squares. A separate model was 
fitted for each human response variable. This simple 
modeling approach was chosen to show that a linear 
model can be sufficient for prediction of human 
behavior, as in future fMRI studies the encoding model 

will also be linear. The models were fitted on four 
blocks and based on this fit a prediction for the human 
responses for the left-out fifth block was computed, 
see Figure 2. This procedure was repeated such that 
each block was left out once (5-fold cross-validation). 
To quantify the predictive accuracy of the model, the 
Pearson correlation between the predicted and actual 
time series was computed on the left-out blocks. As an 
alternative measure, the mean squared error (MSE) of 
the predicted time series was computed. These values 
were averaged across left-out blocks and response 
variables to provide a summary measure of predictive 
accuracy for each game.   

Permutation testing The whole cross-validation 
procedure described above was repeated N = 100,000 
times with randomized human responses to generate 
a null distribution for the correlation coefficient and the 
MSE for each game. Human responses were 
randomly shuffled in each block and convolved with 
the Gaussian kernel. The resulting randomized time 
series were rescaled to have the same minima and 
maxima as the original time series (note that otherwise 
the randomized time series would have considerably 
less variance than the original time series due to the 
convolution step, which would not be an appropriate 
null model for the MSE). The same 5-fold cross-
validation scheme as in the original analysis was 
implemented to obtain Pearson’s correlation values 
and MSE values sampled under the null hypothesis.  

 

 

 
 
Figure 2: Illustration of the encoding model and 5-fold 
cross-validation scheme. A linear regression model 
was fitted to a human response variable (fire response 
in Space Invaders in this example) on four blocks 
using the response probabilities from a DNN trained 
on this game. Based on this model, a prediction for the 
human response variable of the left-out 5th block was 
computed and compared with the actual time series.  
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Table 1: Results 

Results 

 

The results are depicted in Table 1. Predictions of 
human motor responses were significantly above 
chance for all three games both in terms of Pearson 
correlation and MSE.  

 

Discussion 

The presented results provide preliminary evidence 
that human behavior in arcade games can be 
predicted with high accuracy using a DNN-informed 
encoding model approach. While the presented 
behavioral data were recorded at a high sampling rate, 
the predictions were based on time series convolved 
with a Gaussian kernel corresponding in width to the 
canonical HRF in SPM, which means that human 
behavior can be predicted at a temporal resolution 
covered by the BOLD response. Thus, this finding 
clears the way for an extrapolation of this approach to 
neuroimaging data. As the encoding model consists of 
a simple linear regression model, an extension to 
hidden layers encompassing more features also 
seems to be feasible but would require regularization 
of the encoding model, as implemented before in other 
studies (Kay et al., 2008; Schoenmakers et al., 2013; 
Güclü and van Gerven, 2015; Huth et al., 2016).  
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Game Pearson’s r p(r) MSE p(MSE) 

 
Breakout 

 
0.46 

 
< 0.00001 

 
0.0012 

 
< 0.00001 

 
Enduro 

 
0.47 

 
< 0.00001 

 
0.0139 

 
< 0.00001 

 
Space Invaders 
 

 
0.23 

 
< 0.00001 

 
0.0107 

 
0.00006 
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