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Abstract

No one knows everything. Therefore, it is often not
enough to rely solely on one’s own knowledge, nor to
indiscriminately follow advice from others. The current
work examines the neural systems that support the hu-
man ability to capitalize on imperfect social information
to support decision-making. Participants completed an
fMRI task where they could choose to stay with an option
of known value or switch to a hidden option, while receiv-
ing advice from an advisor who had access to both op-
tions, no options, or only the option that was hidden from
participants. First, we find that value-guided regions (in-
cluding dorsal striatum, dMPFC) preferentially track the
expected value of the hidden option when it is the only
option the advisor can access. Second, the advisor’s
knowledge state is represented in regions that support
social reasoning (precuneus, VMPFC). Our results sug-
gest that neural systems that support social cognition
and value-based decision-making support computations
that enable humans to harness social information to vi-
cariously explore the value of latent options.
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Introduction

Social learning—learning from others—is essential for adap-
tive behavior. By learning from others, humans can learn more
about the world than what they can directly experience (Boyd
et al., 2011). However, other people’s knowledge is often as
limited as our own, and their advice may not be perfectly help-
ful. Thus, it is often not enough to accept social information
indiscriminately nor to ignore it entirely; to arrive at optimal
decisions, one must integrate one’s own knowledge with infor-
mation from others (Bahrami et al., 2010).

Recent computational work has examined how human
learners make utility-maximizing decisions by “putting two
heads together” (Vélez & Gweon, 2018). In this study, par-
ticipants played a card game where they chose to “stay” with
a card of known value or “switch” to an unknown card, given
an advisor’s advice to stay or switch. Participants used advice
strategically based on which cards the advisor could see and
how the advisor selected advice, and their responses were
consistent with a Bayesian Theory of Mind model that lever-
ages the advice to infer the value of the unknown card. These
results support the idea that human learners do not simply ac-
cept social information at face value. Instead, people are able
to infer the value of options that they have not directly experi-
enced by harnessing an intuitive understanding of how others’
knowledge and goals gives rise to their observable options.
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Cognitive models offer computational- and algorithmic-level
descriptions of how mental processes generate overt deci-
sions and behaviors (Marr, 1982), but often without explaining
how these inferences are implemented in the brain. One stun-
ning exception is reinforcement learning (RL) models, which
have successfully bridged precise computational descriptions
of the cognitive mechanisms underlying decision-making to
their neural implementation (Dayan & Niv, 2008). However,
past work on RL approaches to social decision-making has
largely focused on identifying neural correlates of observable
aspects of social information, such as others’ accuracy and
trustworthiness (e.g., Boorman et al., 2013; King-Casas et
al., 2005). Less is known about the mechanisms that enable
humans to use social information to discover the value of /a-
tent options.

The current work uses model-based fMRI to investigate
how neural systems that support social cognition and value-
based decision making track socially inferred rewards. Build-
ing on the computational model and the behavioral task devel-
oped in prior work (Vélez & Gweon, 2018), the current work
has two major goals. The first is to identify neural signals that
track the expected value of options that are inferred through
social information (here, the value of the hidden card) and
to test whether regions that support value-guided decision-
making preferentially track this value when the advisor only
has access to the hidden card, compared to conditions where
the advice is fully informative or totally uninformative. The sec-
ond goal is to examine whether brain regions implicated in so-
cial cognition (i.e., the Theory of Mind network Dodell-Feder
et al., 2011) represent the advisor’s epistemic state.

Methods
Participants 20 participants (10F, ages 19-40, M(SD) age =
24.9(6.7)) were recruited for an fMRI study. Participants were
right handed, had normal or corrected-to-normal vision, and
provided informed consent in accordance with the require-
ments of the IRB. Participants were paid $40 for their time
and a bonus of up to $10 proportional to their final score.

fMRI task Participants played a simple card game in the
scanner (Figure 1A; for more details on the experiment pro-
cedure and results, see Vélez & Gweon, 2018). On each trial,
two cards with different point values between +1 and +6 were
drawn. One card was visible to the participant (visible card),
while the other was hidden from them (hidden card). Partici-
pants chose to stay and keep the points in the visible card, or
switch to the points in the hidden card.

In every trial, participants received advice from an “advisor”
who saw a subset of the cards and recommended whether
participants should stay or switch. Before the fMRI task, par-
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Figure 1: fMRI task design and behavioral results. (a) Trial structure. (b) % of trials in which participants switched. (c) Mixed-
effects logistic regression coefficients relating the advisor’s advice and the value of the visible card to participants’ choices to
stay or switch. * denote deviations from 0 (p < .05). Error bars denote (b) bootstrapped 95% CI and (c) model standard errors.

ticipants were introduced to a human confederate playing the
role of the advisor and were led to believe that they would play
the game with the confederate; in reality, in the scanner task,
the advice was generated by a simulated agent. The advisor’s
access to information varied across three within-subjects con-
ditions. In the Both condition, the advisor saw both cards and
deterministically recommended the best option (i.e., advising
to stay if the visible card has the larger value, and switch if the
hidden card has the larger value). In the None condition, the
advisor saw no cards and provided advice at random. In our
critical condition, the Hidden condition, the advisor saw only
the card that was hidden from the participant. In this condition,
the advisor sampled advice (A) using a softmax function:

1
14+ ei(BA X (H—Hpea))

P(A = Switch|H) = (1)
where H is the value of the hidden card; Hyneq = 3.5, the me-
dian card value, centers the advisor’s choice function on the
range of possible card values; and B4 = 1.5 is a free temper-
ature parameter that was estimated from average human re-
sponses in an earlier task (Vélez & Gweon, 2018). Thus, the
advisor’'s advice was generally informative; the advisor was
more likely to recommend switching as the value of the hid-
den card increased. However, because the advisor did not
have full access to information about the cards, following the
advisor’s advice does not guarantee the best outcome.
Participants completed 5 runs of the task, each comprising
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6 blocks of 6 trials (2 blocks/condition, palindromic order).

fMRI task Based on prior work (Vélez & Gweon, 2018), we
modeled participants’ responses using a model that uses ad-
vice to infer the value of the hidden card. Our model infers the
value of the hidden card on each trial (Cy) given the advice
(A) and the value of the visible card (Cy):

P(CH|A,Cv) °<P(CH|C\/)P(A|CH) (2)
where P(Cy|Cy), a discrete distribution that is 0 for Cy = Cy
and uniform everywhere else, represents the learner’s prior
belief about the value of the hidden card, and P(A|Cy) (Eq.
1) represents the likelihood of the observed advice based on
the advisor’s belief about the hidden card value.

Based on its beliefs about the value of the hidden card
(P(Cy|A,Cy)), the model then computes an expected value
(E[CH|A,Cy]). Finally, the model selects an action (L) by com-
paring the value of the visible card to the expected value of the
hidden card using a softmax choice rule:

1
1+ e—Bcx(E[Ch|A.Ly]-Cv)

P(L = Switch|A,Cy) = ©)

where B¢ is a free parameter that modulates how much the
learner’s choices are influenced by expected rewards.



fMRI Processing & Analysis

Data acquisition MRI data were collected using a 3T MRI
scanner (GE Discovery MR750). Functional images were ac-
quired in interleaved order using an EPI sequence (45 trans-
verse slices, TR = 2s, TE = 30ms, voxel size = 2.9mm isomet-
ric). Spiral fieldmap images were collected every 20 minutes
between functional runs. Anatomical images were acquired
at the end of the session (T1 MPRAGE, voxel size = 0.9mm
isometric).

Preprocessing Data were preprocessed with fmriprep, us-
ing fieldmap images for distortion correction (v1.0.8 Esteban
et al., 2018). Functional runs were later smoothed with FSL
SUSAN (FWHM = 5mm).

ROI definition Functional ROIs were defined in each partic-
ipant using an independent functional localizer (Dodell-Feder
et al., 2011). We masked thresholded images (p < .001 un-
corrected) using ROI hypothesis spaces (Dufour et al., 2013)
and selected the cluster within each hypothesis space con-
taining the peak voxel.

GLM We defined a GLM to identify neural correlates of the
expected value of the hidden card. For each condition (Both,
Hidden, None) we defined 6 regressors of interest (18 regres-
sors total): a boxcar regressor spanning all trials in a condi-
tion (from the card phase to the end of the choice phase), two
parametric regressors, each marking the value of the visible
card and the expected value of the hidden card, two boxcar re-
gressors spanning trials where the advisor suggested to stay
or switch, respectively, and a boxcar regressor spanning the
length of the feedback phase. We also included nuisance re-
gressors estimated using fmriprep (framewise displacement,
6 motion regressors, 6 noise components). We estimated the
models using FSL FILM and generated cluster-corrected p-
values using FSL Randomise.

MVPA To test whether Theory of Mind ROlIs represent the
advisor’s access to information, we estimated trial-by-trial re-
sponses in each voxel using a beta series regression. We then
trained a linear, multiclass classifier to label trials by condition
based on the pattern of responses within each functional RO,
and we measured cross-validation accuracy in the left-out run.

Results
Behavioral results

Participants believed that they played the task with a human
partner. In a post-test, 18/20 participants indicated that they
slightly or strongly believed that the advice they received was
provided by a human (4-point Likert scale, “strongly disbe-
lieved” to “strongly believed”; median: 4, mode: 4).
Participants flexibly combined the advisor’s advice with the
value of the visible card to make decisions (Figure 1b—c).
In the Both condition, participants’ responses were primar-
ily influenced by the advisor’'s advice (main effect of advice:
B=10.7,z=17.9, p < .0001; visible card: B = —0.8, z =
—2.7, p = .007). In the None condition, participants’ re-
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Figure 2: Univariate results, showing regions that are a) mod-
ulated by the expected value of the hidden card across all
conditions and b) more strongly modulated by the expected
value of the hidden card in the Hidden condition than in the
Both and None conditions. All maps show cluster-corrected
p-values (FSL Randomise, p j .01).

sponses were strongly influenced by the value of the visible
card (B = —3.7,z=—13.0, p < .0001) and slightly biased by
advice (B = 1.2, z=4.1, p < .0001). In the Hidden condi-
tion, participants’ responses were influenced by both the the
value of the visible card (B = —2.5, z = —14.6, p < .0001)
and advice (B =5.9, z=13.0, p < .0001).

Expected value of the hidden card

We tested whether regions that support value-based decision-
making track the expected value of the hidden card. One re-
gion, intraparietal sulcus, tracked the expected value of the
hidden card in all conditions (Figure 2a). Our key question was
whether there are regions that selectively track this value in
the hidden condition, where participants had to infer the value
of the cards based on both the advisor’s advice and their own
knowledge of the value of the visible card. We identified sev-
eral regions that are more strongly modulated by the expected
value of the hidden card in the Hidden condition than in the
Both and None conditions: bilateral dorsal striatum, middle
frontal gyrus, precuneus, and dorsomedial prefrontal cortex
(Figure 2b, circled, left-to-right).

Advisor’s access to information

Of the functionally-defined regions within the Theory of
Mind network, precuneus (PC, 36.1%; accuracy, 95% CI:
[34.2,38.1], #(18) = 2.98, p < 0.008) and ventromedial pre-
frontal cortex (MPFC, 36.1%; 95% Cl: [34.1,37.7]; ¢(15) =
3.00, p = .008) discriminated between conditions (Figure 3A).
These regions represent the conditions in qualitatively differ-
ent ways: While PC contains distinct representations of each
condition (Figure 3b), vVMPFC discriminates conditions where
social information is relevant to choice (Both, Hidden) from
conditions where it is not (None; Figure 3c).

Discussion

The current work leveraged a Bayesian Theory of Mind model
to examine how the computations involved in rich mental state
reasoning support value-based decision making. First, we
identified regions that track the inferred value of the hidden
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Figure 3: MVPA results. a) 3-way cross-validation accuracy
in each region within ToM network. denotes deviations from
chance (one-sample t-test). b—c) Confusion matrices in PC
and VMPFC. y-axes denote true condition; x-axes denote
model predictions; fill denotes average co-occurrence.
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card. While IPS, a region implicated in numerical cognition
(Nieder & Dehaene, 2009), reflected this value across all con-
ditions, striatum, precuneus, frontal gyrus, and dMPFC re-
flected this value selectively in the Hidden condition, where
neither participants’ knowledge nor the advisor’s advice alone
were sufficient to make optimal decisions. Second, precuneus
and vMPFC represented the advisor’s access to information.
These results are consistent with prior work, which finds that
regions that support Theory of Mind represent abstract fea-
tures of mental states, such as emotional valence and the
strength of evidence supporting a belief (Koster-Hale et al.,
2017).

Put together, our work identifies how neural systems that
support Theory of Mind and value-guided decision-making
each contribute to decision-making based on imperfect so-
cial information. However, it does not speak to how these
networks may interact, and how interactions between these
networks might shift based on how strongly one relies on so-
cial information make decisions. Ongoing work is currently
addressing this question.

Our results complement reinforcement learning ap-
proaches to social cognition, which have provided founda-
tional insights into how regions that support value-based
choice represent and make use of social information (Behrens
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et al, 2009). Going beyond this work, we find that
these regions track not only observable properties of social
information—such as their accuracy—but also the value of la-
tent options that are only visible to others. Our work provides
an example of how Bayesian models of social cognition can di-
rectly inform hypotheses about neural computations. We hope
that this work is a first step towards a more pluralistic and com-
plete computational account of the neural mechanisms under-
lying human social cognition.
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