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Abstract  

How can the human brain retrieve unique memories, 

given the vast amount of overlapping information 

available in memory? The aim of the present study is to 

understand what role hippocampal theta oscillations 

play in this mnemonic selection process.  

Computational models propose that phase coding 

along a slow (theta) oscillation provides an efficient 

way of separating relevant, to-be-remembered 

information from overlapping, currently irrelevant 

information (Lisman & Jensen, 2013; Norman et al., 

2006). In the present study, we used a newly 

developed approach (Kerren, Linde-Domingo, 

Hanslmayr, & Wimber, 2018) for analysing periodic 

memory reactivation in non-invasive 

magnetoencephalographic (MEG) data. We show that 

to-be-remembered memories are reactivated at a 

specific phase along a slow (7Hz) hippocampal 

oscillation, and that the brain codes competing 

memories at a different phase of the oscillatory cycle. 

This is the first demonstration of phase shifts in 

periodic memory reactivation signals in humans, and 

provides new insights into how the brain handles 

mnemonic competition on a millisecond time scale. 
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Introduction 

In a previous study, we showed that the neural 

signatures of memory reactivation rhythmically 

fluctuate, and that there is a specific phase of an 

ongoing slow oscillation at which target memories are 

preferentially reactivated (Kerren et al., 2018). The 

present study set out to test for a functional role of 

slow oscillations, and phase coding in particular, in 

separating overlapping memories. Our predictions 
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were derived directly from a computational model that 

uses an oscillating learning algorithm to resolve 

competition during memory retrieval (Norman, 

Newman, Detre, & Polyn, 2006; Norman, Newman, & 

Detre, 2007) This model assigns specific phases or 

“time slots” along the oscillation to the reactivation of 

target and competing memories, respectively. During 

the high inhibition phase, weak nodes representing the 

target memory are identified and strengthened, while 

overly strong nodes representing the competing 

memories are being identified and punished during low 

inhibition phase. We here aim to test two basic 

predictions of this model, namely (a) that target and 

competitor representations are active at different 

phases along a slow oscillation; and (b) that across 

repeated reactivations target features are 

strengthened while competitor features are weakened. 

 

 

 

Paradigm 

An associative-learning task was used where all (n = 22) 

participants (but two, where time limits and button 

box error occurred resulting in five blocks) performed 6 

experimental blocks (40 encoding trials and 72 retrieval 

trials per block), each consisting of an associative 

learning phase, a distractor task, and a retrieval test 

(Figure 1). A learning trial consisted of a jittered 

fixation cross (between 500 and 1500ms), a unique 

action verb (1500ms), a fixation cross (between 1000 

and 1500ms), followed by a picture of an object that 

was presented in the centre of the screen for a 4 s. 

Participants were instructed to press a button as soon 

as they had created a vivid mental image that involved 

the object and the action verb. In the critical 

competitive condition (CC), two different images were 

associated with the same word cue during learning. 

Two baseline non-competitive (NC) conditions were 

created where an object was presented with the same 

word twice (NC1), or was only learned with a single 

word once (NC2). 

Figure 1. At encoding, participants associated 

action verbs with pictures of objects or scenes, 
or both. At retrieval, they were asked to retrieve 
the most recently encoded association. 
Thereafter, two questions were asked, in order 
to evaluate memory performance. 
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A distractor task followed each learning phase. 

Participants’ memory for the 40 verb-object 

associations learned in the immediately preceding 

learning phase was then tested in random order. A test 

trial consisted of a jittered fixation cross (500-1500ms), 

followed by one of the action verbs as a reminder cue 

for 1s. Participants were asked to bring back to mind 

the object that had been associated with this word as 

vividly as possible, and to indicate successful recall with 

a button press. The frame flashed once and a blank 

screen was on for 4 seconds.  The blank screen was 

followed by two catch questions probing the category 

and sub-category of the recalled object.  

The retrieval phase was repeated 3 times in order to 

investigate up- and down-regulation across repetitions 

for the neural representations of target and competing 

memories, respectively. 

 

 

Meth 

Method 

In order to attenuate high frequency noise, a Gaussian 

window with a full-width at half maximum (FWHM) in 

the time-domain of 40ms was applied to the signal 

before classification. A Linear Discriminant Analysis 

(LDA) was then trained and tested on the MEG sensor 

patterns (pre-processed signal amplitude on each of 

the 306 channels, with leave-one-out cross-validation), 

independently per participant and at each time point 

of a retrieval trial from 500ms pre-cue up to 2000ms 

post-cue. Two separate classifiers were trained to 

detect systematic differences between category-pure 

(i.e., non-competitive) trials where participants were 

recalling animate vs inanimate trials (for object), and 

indoor vs outdoor scenes (for scenes), respectively. 

These two classifiers were then tested on the 

competitive condition, and evidence was plotted 

separately depending on the category of the target and 

competitor memory. This LDA approach reduces the 

data from 306 channels into a single decoding time 

course per trial per category, and we used these single-

trial, time-resolved outputs of the classifier as an index 

of memory reinstatement of targets and competitors.

Figure 2. Optimal phase for episodic memory 

reactivation for target and competing 
memories, respectively. Target memories has a 
mean angle of 16 degrees, whereas competitors 
had a mean angle of -153 degrees. 
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To compute the phase of the hippocampal slow 

oscillation, the raw sensor data were projected into 

source space using a linear constrained minimum 

variance (LCMV) beamforming algorithm (Gross et al., 

2001; Van Veen, van Drongelen, Yuchtman, & Suzuki, 

1997), and a hippocampal mask was used to extract the 

7-Hz phase of the hippocampal virtual channels for each 

trial and time point. Ten phase bins covering the full cycle 

of this 7-Hz oscillation were created, and evidence for 

memory reinstatement from our classifiers was then 

sorted according to these recurrent bins, on each single 

trial and separately for target and competitor memories. 

Results 

Sorting classifier evidence by hippocampal theta phase 

provided evidence that the phase for maximal decoding 

of target memories is shifted by approximately 170 

degrees compared to the phase of maximal competitor 

decoding (Figure 2). This result confirms the idea that 

target and competing memories tend to be active at 

opposing phases of a slow oscillation, derived from the 

computational model (Norman et al., 2006; Norman et 

al., 2007). 

Conclusion 

The present study was aimed at understanding the sub-

second brain dynamics supporting the selection of 

relevant against irrelevant, currently competing 

memories. By extracting the phase from virtual 

hippocampal channels, and relating it to continuous 

indices of the fidelity of episodic memory reinstatement, 

we show that the optimal phase for target and 

competitor reactivation is shifted by approximately 170 

degrees. This is the first result showing that the brain is 

rapidly alternating between mnemonic alternatives, 

mirroring some recent findings observed in the rodent 

literature (Kay et al., 2019), and providing support for 

computational models that are based on an oscillating 

learning rule (Norman et al., 2006). 
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