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Abstract
The ability to change others’ attention for our own benefit
is referred to as attention manipulation and is known to be
an important cognitive ability for coordination in cooper-
ative tasks. In this work, we formulate attention manipula-
tion in the context of reinforcement learning (RL) agents
and argue that if the environment is complex enough
agents will learn to use this skill. In particular, we first
outline some of the characteristics in the environment
that make it complex enough for this behavior to become
relevant. Then, we test RL agents in two environments
with such characteristics. Finally, we estimate a measure
of attention manipulation using information theory func-
tionals proposed to capture causal influence. Our results
indicate that attention manipulation can be used by rela-
tively simple RL agents to achieve better coordination in
cooperative tasks.
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Attention Manipulation
Humans and other social species face the challenge of navi-
gating through complex social interactions. In addition to the
basic skills for coping with conspecifics, humans have devel-
oped specific cognitive abilities such as joint attention i.e. the
ability of individuals to focus on a common goal. This ability
has been proposed to be a foundation to many of our social
competencies like theory of mind, it supports general cogni-
tive development (Tomasello, 2019; Moore & Dunham, 1995).
Joint attention provides the means by which humans create
a joint agency with others (Bolt, Poncelet, Schultz, & Loehr,
2016) and conceive others as intentional agents (Carpenter,
Nagell, Tomasello, Butterworth, & Moore, 1998). An important
prerequisite for joint attention is the skill of attention manipu-
lation (Kaplan & Hafner, 2004), that is the ability to change
others’ behavior to attend to a shared goal.

Kaplan and Hafner (2004) provided a survey of computa-
tional models for joint attention and defined the necessary
skills a robot or agent needs master to have human-like joint
attention. They define as prerequisites the following: 1) at-
tention detection, which is the ability to track the attention of
others; 2) attention manipulation, use of verbal or non-verbal
communication to direct the attention of others; 3) social co-
ordination, that is, engagement in coordinated interaction with
others; and 4) intentional stance, conceiving others as inten-
tional agents. In this work, we aim to develop the skill of atten-
tion manipulation in RL agents and, by doing so, build agents
with better social coordination.

Reinforcement Learning and Attention Manipulation
Deep RL has shown outstanding results in single-agent
games like Chess, Go, Atari or even Starcraft. A yet chal-
lenging area for RL is the multi-agent domain, where agents
need to cooperate and compete to achieve common or indi-
vidual goals. In this variant, the complexity of the environment
is augmented and agents have to share space, resources and
goals. We argue that current reinforcement learning agents,
as in the case of humans, able to manipulate the attention of
others can alleviate this complexity. For agents to use this
skill, environments need to be complex enough to provide the
necessary pressures for this behavior to be needed. In pilot
studies we have found that if the environment has the following
characteristics, agents manipulate the attention of others:

• Signalling: in order to manipulate the attention of others,
agents must be able to encode a meaningful signal that is
visible to other agents. This could be achieved by incor-
porating a communication channel between agents or by
encoding it within their movements.

• Specialization: agents need to be able to specialize, i.e.
have particular information or skills not available to others.
For example, in a foraging task, some agents may special-
ize on gathering fruits and others on hunting prey. However,
specialization can also be achieved by limiting the informa-
tion available to some agents.

• Limited field of vision: cooperating becomes useful when
there is the need for sharing knowledge. If agents have
complete vision of the environment, this need for sharing
knowledge diminishes.

• Time pressure: attention manipulation can be used to
complete tasks faster. An agent would be able to pick two
boxes on its own but it would take less time if it can ma-
nipulate or alert another agent to pick one of them. For
this reason, having a limited amount of resources (time,
metabolism or health) adds pressure for agents to solve
tasks as quickly as possible.

• Collective tasks: agents can have their own goals and re-
wards but some of this goals need to be shared with other
agents, enforcing the need to coordinate their actions to
achieve a common goal.

For humans, these pressures are ubiquitous in our habitat
but current reinforcement learning environments do no pro-
vide them and in our view, this limits the social skills agents
need to learn.
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Model
The reinforcement learning policy π(at |st ,Ot) is implemented
as a set of three different modules 1. The vision module ex-
tracts features from the observations generated by the en-
vironment. The attribute module processes additional at-
tributes emitted by the environment like agent’s signal state,
resource’s level or storage’s health (see section Environments
for an explanation on these attributes). Finally, the motor mod-
ule will produce a movement action (left, right, up, down, stay
or attack) and the expected long-term value. All these mod-
ules are implemented as fully connected layers and ReLU as
activation function. The vision module has three layers, the at-
tribute module has two layers and the motor module has one
layer, all of them with 32 units. The model was trained using
the Proximal Policy Optimization (PPO) algorithm (Schulman,
Wolski, Dhariwal, Radford, & Klimov, 2017).

Figure 1: Architecture of the model used in the experiments.
These modules are implemented with fully connected layers.

Environments
To study attention manipulation, we have created two different
environments where coordination and cooperation between
agents are fundamental to achieve a high collective reward.
They follow the criteria described above and provide a
test-bed for attention manipulation. The arena of each envi-
ronment have sizes of 6x6 and 10x10, respectively. These
environments produce an observation of size 3x3 and 4x4 in
the first and second environments respectively. Additionally,
they also produce the internal attributes of some of the
elements in the arena, for example, the storage’s resource
level, number of resources each agent is carrying or whether
the signal is active or not for any of the agents. To have a
controllable setting, signals are produced by the environment
at specific points in time (see below) and is provided as input
to the agents. This creates a sandbox where we can evaluate
how agents would learn and behave if signals are sent when
different events happen. Finally, two learning agents with
same action space interact with the environment.

Mining World: in this environment agents need to mine
two type of resources and take them to a nearby storage.
Mines have a probability of 0.01 of releasing a resource at
each time step. Each agent has a limit of resources they
can carry in its basket and every time step the level of each
resource in the storage decreases linearly. Both agents
get a reward of 0.1 every time step these resource levels
are above zero, having the common goal of keeping the

storage resources above zero. They also get an individual
reward of 0.1 for each unloaded resource and, to be efficient,
agents are expected to carry as many resources as possible.
Additionally, if agents unload resource simultaneously they
get a higher reward. For an example, see figure 2 left. If
agents want to maximize the total reward, they will need
to coordinate to unload resources at the same time, which
becomes non-trivial due to the stochasticity of the mine
mechanism to release resources and the limited field of vision
of each agent. Here, an agent emits a signal when its basket
is fully loaded.

Fort World: the dynamics of this environment are as
follows: agents share the duty of protecting a fort, if this fort
is destroyed both agents die. Additionally, they need to also
gather food from four available points to keep the fort’s food
storage above zero and again, both agents die if food levels
reach zero. Every time step the food level decreases on
every time step but can be recovered. On the other hand, the
fort’s health level decreases when enemies attack it. These
enemies can appear with a probability of 0.015 and can
destroy the fort in twenty time steps, agents have to defeat
their enemies by attacking them a fixed number of times.
Here, if both agents collaborate, the enemies will die quicker
getting more chances of survival but at the same time they
need to keep gathering food. Note that agents do not need
to return to the fort to collect resources, making the task of
defending the fort more complicated. In this case, an agent
sends a signal when it sees an enemy.

Figure 2: On the left, an example of the Mining World with two
agents going to the storage to unload resources. On the right,
the Fort World environment where one agent is gathering food
and another agent is attacking an enemy assaulting the fort.

Measuring the Manipulation of Attention
Measuring the degree by which actions of an agent influence
the attention of others is a non-trivial task. One way to do this
would be to use the final collective reward since the more re-
ward was collected the better the agents were collaborating.
However, we argue that this methodology does not provide a
clear and reliable measure, instead we suggest that to char-
acterise the learning of this behavior in a reliable way, agents
need to be able to answer the following question ”Would have
I acted in the same way if the other agent had not sent the sig-
nal?” i.e. use counterfactual knowledge (Pearl & Mackenzie,
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2018). This means that if the behavior of an agent X changes
due to agent Y’s actions, agent Y can manipulate its attention.
We note that in the case of the agents studied here, attention
locus and location are in one-to-one correspondence. Follow-
ing (Jaques et al., 2018), we reuse their intrinsic reward for
causal influence to measure the degree to which an agent’s
signal si

l can manipulate the actions a j of others:

p(a j|o j)≡ ∑
∀k 6=l

p(a j|si
k,o

j)p(si
k|oi) (1)

AM(a j,si
l)≡ DKL

(
p(a j|si

l ,o
j)||p(a j|o j)

)
(2)

where p(a j|o j) is the probability distribution over actions of
agent j if the signal si would have taken any another value
than si

l . DKL is the Kullback-Leibler divergence (Kullback &
Leibler, 1951) and p(a j|si

l ,o
j) is the probability distribution of

agent’s j actions conditioned on seeing the observation o j

and agent i emitting the signal si
l . Note that the observation

o j is independent of the signal.

Results
We evaluate how relatively simple agents can manipulate the
attention of others to achieve a common goal. This behav-
ior is exemplified in figure 3 for the Fort World environment.
Here, the signal is sent when one of the agents sees the en-
emy, making the other agent help defeat the enemy. In this
case, the second agent would not have assisted the other
agent without the emitted signal.

Figure 3: Example of attention manipulation in the Fort World.
On the left, the enemy (pink character) comes to attack the
fort. One agent (green and red) sees the enemy and tries
to manipulate the attention of the other agent by sending a
signal, middle. The second agent helps to avoid the assault
by striking the enemy, right.

To demonstrate how attention manipulation can help in the
Mining World environment, figure 4 exhibits the number of
resources unloaded simultaneously by both agents, show-
ing that in the case of using attention manipulation (orange)
higher performance is achieved compared to not using this
skill (blue). In figure 5, we show how our measurement for at-
tention manipulation behaves in this same environment, cap-
turing if agents are coordinating to unload resources simul-
taneously. For completeness, we also compute this metric for
agents that do not use signals and, as expected, this measure
gives low values when a signal is raised by another agent.

Figure 4: Number of resources unloaded simultaneously in
the Mining World environment. Comparison between agents
that can manipulate the attention of others (orange) and when
they cannot (blue).

Surprisingly, in our experiments agents did not manipulate
each other equally i.e. one agent would consistently manip-
ulate the other agent more often, suggesting that one agent
tends to follow what the other dictated.

Figure 5: AM measurement applied in the Mining World to
agents that can manipulate each others’ attention (orange)
and agents that cannot (blue). Each line combines the AM
measurement for both agents.

In the case of the For World environment, we show in figure
6 how agents are able to defeat enemies (left) and collect food
(middle) earlier in the training when they can manipulate each
others’ attention (orange) and that without (blue), agents take
longer to find a good strategy to do both. The right side of
the image shows the number of steps agents can keep alive
in both settings and illustrates how they can stay alive longer
during earlier stages of the training due to better coordination.

Discussion
Attention manipulation is an important prerequisite for com-
plex coordinated behavior such as joint attention, which is
thought to be essential for humans levels of cooperation and
coordination. In this work, we have shown that RL agents
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Figure 6: Comparison of agents with (orange) and without
(blue) attention manipulation in the Fort World environment.
Defeated enemies (left), collected food (middle) and number
of steps alive (right) in average.

can use a similar behavior to attention manipulation when the
environment is complex enough to provide a strong pressure
for communication and cooperative behavior. We outlined
some of the elements that make these environments complex
enough for these pressures to be present and presented two
environments with these elements. Additionally, we connected
attention manipulation to causal influence and provided a way
to measure how much agents can manipulate each others’ at-
tention using counterfactual and information theory measure-
ments. Our results show that agents with simple architectures
are able to use similar behavior to attention manipulation to
accomplishing a common goal.

A limitation in our work to address is the fact that the signal
is currently produced by the environment at a fixed point in
time, this can be ineffective. We believe that by applying sim-
ilar tools to our measure of attention manipulation will allow
agents to send this signal when they consider to do so. Ad-
ditionally, our environments are limited to two subtasks (e.g.
collect food and defend fort). We will extend these environ-
ments to incorporate more sub-tasks, making the selection of
which task an agent should attend to more complicated.

In conclusion, attention manipulation, as part of the joint at-
tention framework, is a powerful tool used by humans to coop-
erate. As shown in this work, agents too can benefit from this
tool to achieve complex tasks in a cooperative way. We be-
lieve that providing artificial agents with cognitive abilities like
attention manipulation could open up important new research
avenues.
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