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Abstract
Spatial coincidences can lead to causal discoveries. We
might expect to find a few ants on the sidewalk, but an
unusually large cluster tips us off about the presence of
a nearby food source. The leading cognitive explanation
for this class of reasoning is Bayesian, but Bayesian mod-
els remain notoriously agnostic about the inner work-
ings of the cognitive “black box.” In this cluster detec-
tion paradigm, we ask what algorithms the brain might
actually implement to detect spatial coincidences in an
“approximately Bayesian” way. We find evidence that the
brain represents two variables of the generative model:
1) the location of a hypothesized causal source and 2) the
location of the points to which it gave rise. However, we
propose that the brain is limited to representing probabil-
ity distributions over one but not both of these variables,
resulting in strong deviations from Bayes-optimality. We
find, counterintuitively, that subjects become more prone
to false alarms as the amount of information increases,
and our proposed cognitive algorithm accounts for this
pattern. Our representation-level algorithm elucidates
the cognitive processes underlying coincidence detec-
tion, and helps explain our tendency to perceive causal
patterns where none exist.
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Introduction
Griffiths and Tenenbaum have proposed that a sense of co-
incidence can lead to causal discoveries (Griffiths & Tenen-
baum, 2007)– for instance, in the “London bombing problem,”
an individual might look at a map of bombings to determine
whether they are indiscriminate or targeted. Their normative
Bayesian framework provides a highly unifying account of our
sense of coincidence in a variety of contexts. But while the
framework provides an approximate “as if” description of hu-
man behaviour, it falls short of making any commitments about
the mental representations and algorithms carried out by the
brain during this assessment. Indeed, if we were to translate
the Bayesian model for spatial coincidence detection into a
representation-level model of the inner workings of the brain,
we expect that the number of computations required to solve
a simple spatial coincidence detection task would quickly ex-
ceed a number which might plausibly be implemented by the
brain.

In a decision-making task, a nuisance parameter is a vari-
able that does not bear directly on the decision, but that must
be accounted for in order to arrive at the variable of interest.
Previous studies on category learning (Fleming, Maloney, &
Daw, 2013) (Murphy, Chen, & Ross, 2012) and perceptual
decision-making suggest that subjects might use simplified
point-estimates of intermediate nuisance parameters instead
of marginalizing over their full probability distributions (though
see (Shen & Ma, 2016)), resulting in particular patterns of sub-
optimal behaviour.

In the current study, we employ a spatial coincidence task
inspired by the “London bombing” problem. Our version of the
task uses the spatial distribution of pigeons in a park, affected
by a pigeon feeder whose location is not directly observable.
Pigeons cluster around the pigeon feeder, if she is present.
The subject’s goal is to infer the presence or absence of the
feeder. The generative model of the task entails two abstract
parameters: 1) the location of the causal object (feeder) and
2) which of all observations “are affiliated with” (i.e., “result
from”) the causal object. We ask whether these two parame-
ters are represented by the brain at all, and if so, whether they
are represented in full probabilistic form, or as collapsed point
estimates.

Our analyses rely on two important assumptions:
Firstly, we assume that practice trials and explicit verbal

and graphical instruction are sufficient for subjects to learn
the correct generative model. This involves, for instance, the
assumption that subjects learn the general statistics of where
and how often the bird feeder appears.

Secondly, we assume that the variables entailed by the gen-
erative model (e.g., the location of an unobserved object) must
be represented by the brain as either a single-point estimate
(e.g., the number ‘5’), or as a full probability distribution (e.g.,
a ‘heatmap’ of probability over multiple locations), or else not
represented at all.

We then test three hypotheses about probabilistic represen-
tation in the brain during a spatial coincidence detection task.
On the Strong Bayesian representation hypothesis, the brain
actually represents all of the abstract parameters of the gener-
ative model, including their full probability distributions. On the
Non-Probabilistic representation hypothesis, the abstract vari-
ables of the generative model are not mentally represented at
all: instead, subjects assess spatial coincidences using some
heuristic metric like the mean distance between points. Lastly,
the Weak Bayesian representation hypothesis holds that the
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abstract variables entailed by the generative model are indeed
represented by the brain, but that not all such parameters can
be represented as full probability distributions: at least some
are represented as single-point estimates.

In a variety of perceptual and cognitive tasks, much ef-
fort has been spent characterizing performance as “Bayesian”
or “non-Bayesian” (taken broadly to mean any “suboptimal”
heuristic strategy) without asking what it is the brain repre-
sents. The present study advance a new way of analyzing
this vast category of suboptimal perceptual strategies by ask-
ing more specifically whether cognitive systems represent any
of the abstract variables entailed by the generative model at
all, and if so, in what form.

Methods

Task 10 subjects were given a cluster detection task, in
which they were asked whether a set of dots was drawn from
a random uniform distribution, or from a mixture of a uniform
distribution and a Gaussian. In task context, dots denoted
the location of pigeons in a park. A “causal object” was intro-
duced as an invisible “pigeon feeder” whose location was not
directly observable. Subjects were instructed as follows: “On
days when the pigeon feeder is present, pigeons tend to clus-
ter around her location. But even when the feeder is present,
there’s only a 50% chance that a given pigeon will be affiliated
with her.” Pigeons which were not affiliated with the feeder
were drawn randomly. The location of the feeder herself was
drawn from a Gaussian distribution centered at the center of
the screen. Subjects indicated whether a feeder was present
by pressing a button. Their decision was based on the spatial
distribution of pigeons on the screen. Subjects completed 20
practice trials with full feedback (“correct”/ “incorrect,” includ-
ing the partition of pigeons and actual location of the feeder if
there was one), followed by the main task, comprised of 2000
trials with partial feedback (“correct”/ “incorrect”).

The generative model In our task, two nuisance parame-
ters are entailed by the generative model: µ, the location of
the bird feeder, and z, the “partition” of the pigeons. The par-
tition denotes which of all pigeons are affiliated or unaffiliated
with the feeder. It can be represented as a binary vector (af-
filiated/ unaffiliated) of length N (where N is the number of
pigeons on that trial).

The ideal Bayesian observer would represent both µ and z
as probability distributions. In the case of µ, this representa-
tion might be something like an imagined probability heatmap
over possible locations where the feeder may be (e.g., an
imagistic representation). In the case of z, such a probability
distribution is difficult to represent imagistically, as one would
need to simultaneously represent the probability of every pos-
sible combination of independently drawn pigeons being affili-
ated or unaffiliated with the feeder (2N possibilities). The brain
may still represent it in some form nonetheless.

Observer models We test five families of observer models,
each with a different assumption about what it is that cognitive
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Figure 1: Taxonomy of model families. Family H models do
not posit the representation of either location or partition.

systems represent during the task (Fig 1).
In Family A (the Strong Bayesian model), the brain repre-

sents full probability distributions over both variables of the
generative model.

In Family B, the brain commits to and represents only a sin-
gle partition (z). That is, it only represents one of all possible
combinations of affiliated pigeons. How exactly it chooses that
particular set of “tagged” pigeons to represent as “affiliated” is
determined by the specifics of each of the models within Fam-
ily B. The subject still represents (and later marginalize over)
the feeder location (µ) as a probability distribution over all pos-
sible locations.

Conversely, in Family C, the brain commits to and repre-
sents only a single feeder location (µ), but represents (and
later marginalizes over) the full probability distribution of parti-
tions (z). For instance, in one model, the brain simply chooses
the center of mass of all of the pigeons as its committed µ.

In Family D, the brain represents both feeder location and
partition as point-estimates, and not as probability distribu-
tions. For instance, one model commits to both feeder location
and partition by maximizing the joint posterior.

Lastly, in Family H, the brain does not represent feeder lo-
cation or partition at all. Instead, subjects solve the task by
representing some other abstract variable outside of the gen-
erative model, like “pigeon density.” For instance, the subject
might simply represent the density of the points on screen and
respond “feeder present” if that number exceeds some thresh-
old.

Family A tests the Strong Bayesian representation hypothe-
sis, family B, C, and D test the Weak Bayesian representation
hypothesis, and family H tests the non-probabilistic represen-
tation hypothesis. See Figure 5 for the full list of observer
models by family.

Results
We first characterize behavioural responses as a function of
basic stimulus properties like “pigeon density.” As one might
expect, subjects are more likely to respond “feeder present”
the more densely packed the pigeons are on screen. Intu-
itively again, when the distance between the two closest pi-
geons is very small (i.e., when the two closest pigeons are
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Figure 2: Top row: Histogram of stimulus distributions. Bottom
row: Proportion of “feeder present” responses as a function of
each distance-based heuristic. Colour saturation indicates the
number of pigeons on a given trial.

very close together), subjects are also more likely to respond
“feeder present.” (Fig 2) Nevertheless, subjects are surpris-
ingly adept at telling apart trials when the feeder truly is or isn’t
present even when statistics like the “mean distance” between
points are held constant. This fact is evidenced by the vertical
offset of the red and blue curves in Fig 2. Therefore, from the
outset, we see that if these abstract variables like density or
minimum distance are represented, they cannot possibly be
the only thing that subjects represent in order to make accu-
rate judgements about spatial coincidence in this task.

One unexpected finding is that the proportion of “feeder
present” responses increases as a simple function of the num-
ber of pigeons (N) on screen (Fig 3). In other words, as the
number of uniformly drawn dots increases, subjects are more
likely to sound a false alarm. Examining model predictions,
we see that this unexpected qualitative trend is at odds with
the Strong Bayesian hypothesis (Fig 3)– intuitively, if we were
able to reason optimally, observing more dots drawn from a
uniform distribution should make us more certain that the dis-
tribution is in fact uniform. Instead, we see that the number of
“feeder present” responses increases with increasing N. We
see this qualitative divergence from Bayes-optimal as the up-
ward slope of the blue curve in Fig 3 against the downward
slope of the curve predicted by the Bayesian model. Hence-
forth, we refer to the slope of this curve as the “effect of N on
false alarms.”

To summarize performance of the full range of models, we
show two of the most informative aspects of model perfor-
mance: the model’s predicted effect of N on false alarms, and
the overall predicted subject accuracy (% correct) in Fig 4.
While the strong Bayesian model (Family A) predicts subject
accuracy reasonably well, it is one of the only that predicts the
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Figure 3: Model fits of proportion of “feeder present” re-
sponses as a function of number of pigeons (N) for three mod-
els: strong Bayesian, maximum joint posterior, and agglomer-
ative clustering. The Bayesian model incorrectly predicts a
decreasing effect of N on false alarms.

wrong direction of the effect of N on false alarms. Family H
model predictions are even farther afield.

Formal model comparison (Fig 5) shows that each of
the three remaining “Weak Bayesian” families (B,C, and D)
present at least one strong contender for winning model. From
this, we are left only with variants of the Weak Bayesian hy-
pothesis: the two abstract variables entailed by the generative
model are indeed represented by the brain, but both cannot
be represented as full probability distributions: at least one (if
not both) are represented as single-point estimates.

Discussion

From our data, we can conclude that subjects likely do repre-
sent both variables of the generative model in a spatial coin-
cidence detection task, but that at least one of the two cannot
be represented as a full probability distribution.

Importantly, there is a reasonable way to distinguish be-
tween the top four Weak Bayesian models, even though they
are functionally indistinguishable as per AIC and BIC compar-
ison (that is, even though they each provide statistically indis-
tinguishably good fits to the data). We propose analyzing the
plausability of each model at the representational level. Only
one the four winning models evades the combinatorial explo-
sion of unique representations and provides a plausible model
for mental representation in the brain: Agglomerative Cluster-
ing.

In Agglomerative Clustering, the observer commits to a par-
ticular z rather than representing a full probability distribu-
tion. We choose this z by picking a single point as the clus-
ter “seed.” The cluster is hypothesized to belong to the causal
source. One iteratively adds the next-nearest point to the clus-
ter, each time evaluating the log likelihood ratio which results
from that particular z. We continue adding points until the log
likelihood ratio no longer increases, resulting in some spatially
contiguous set of points hypothesized to belong to the source
if such a source exists, represented by the committed z. The
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Figure 4: Two informative dimensions of model predictions:
overall predicted subject accuracy, and effect of N on false
alarms (the slope of the blue shaded line in Fig 3)

z-dependent log likelihood ratio is then calculated as a deci-
sion variable with noisy threshold. Importantly, the number of
operations required to find this z is less than N2. Crucially, this
algorithm coheres with intuitions that the least plausible possi-
bilities of z are not represented or considered at all during the
decision-making process.

While still speculative, the notion that such probabilistic in-
ferences might be mediated solely by analog, iconic repre-
sentations is attractive, and agglomerative clustering satisfies
this constraint. A mental representation of the commitment
to a particular z might simply entail the tagging or highlight-
ing of certain points in a display. From that representation,
all that remains is to marginalize over all possible locations of
the feeder, which plausibly amounts to some operation on an
imagistic heatmap-like representation. This magnitude would
finally be compared against a noisy decision threshold.

The value of this reduction to an iconic representation-level
algorithm is clear: while the Bayesian model provides a gen-
eral computational lens for viewing the problem to be solved,
it does not provide us with a plausible picture of the mental
representations and operations which implement the compu-
tation. Furthermore, we find a qualitative divergence of the
Bayesian prediction from human data– namely, increasing the
number of observations increases the rate of false alarms.
We make progress by pursuing a plausible representation-
level algorithm which accounts for this effect, narrowing the
search space of causal mechanical explanations for the phe-
nomenon.

There are a number of limitations to this approach. Mod-
elling behavioural evidence will never provide definitive proof
that any one variable is necessarily represented by the brain.
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Figure 5: Model comparison. MML denotes “Maximum
Marginal Likelihood,” MMP denotes “Maximum Marginal Pos-
terior,” MJP denotes “Maximum Joint Posterior.” NN denotes
“Nearest Neighbour.” The four winning models (starred) are
indistinguishable via AIC and BIC.

Variables can be represented without ever being used down-
stream to arrive at a decision. Nevertheless, the current study
provides considerable evidence to favour the Weak Bayesian
account of representation, and the further hypothesis that sub-
optimal judgements of spatial coincidence may be accounted
for by natural limitations in iconic representation. Further
evidence for the existence of particular iconic representa-
tions should come from paradigms which test representational
“transfer” (discussed in (Maloney & Mamassian, 2009)): an
abstract posit of a computational model is more likely to truly
be represented in the brain if it is also shown to be used in a
subsequent, disparate task.
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